中国农业科学 ›› 2020, Vol. 53 ›› Issue (2): 357-370.doi: 10.3864/j.issn.0578-1752.2020.02.010
戴宇樵1,2,吕才有1(),何鲁南1,易超1,刘学艳1,黄雯1,陈加敏1
收稿日期:
2019-04-18
接受日期:
2019-10-09
出版日期:
2020-01-16
发布日期:
2020-02-17
通讯作者:
吕才有
作者简介:
戴宇樵,18985575397;E-mail:827927867@qq.com。
基金资助:
DAI YuQiao1,2,Lü CaiYou1(),HE LuNan1,YI Chao1,LIU XueYan1,HUANG Wen1,CHEN JiaMin1
Received:
2019-04-18
Accepted:
2019-10-09
Online:
2020-01-16
Published:
2020-02-17
Contact:
CaiYou Lü
摘要:
【目的】基于代谢组学的超高相液相色谱/质谱(LC-MS)联用技术探究云南大叶种‘云抗10号’晒青茶加工过程中代谢产物的变化,发现影响晒青茶品质形成的标志性代谢物,并进一步研究这些物质的变化路径,为了解云南晒青茶品质形成机理奠定基础。【方法】在制作‘云抗10号’晒青茶过程中,取‘云抗10号’鲜叶、揉捻叶、晒青叶各3组。样品经预处理后,运用LC-MS检测3组样品中的代谢产物,利用质谱数据库对其定性。运用多元统计方法主成分分析(principal component analysis,PCA)和偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)对3组样品检测数据进行分析。通过PLS-DA方法筛选差异显著的代谢物。【结果】建立了‘云抗10号’鲜叶、揉捻叶和晒青叶的代谢物谱的LC/MS分析方法,将代谢组数据进行主成分分析和偏最小二乘法判别分析,并将3组样品聚类区分。并用LC-MS技术对‘云抗10号’晒青茶及在制茶进行检测,结合多元统计分析,在鲜叶、揉捻叶、晒青叶之间发现差异代谢物701种,揉捻叶与鲜叶的差异显著代谢物116种,晒青叶与鲜叶的差异显著代谢物158种,晒青叶与揉捻叶的差异显著代谢物48种。比对KEGG与MWDB数据库分析代谢物,这些代谢物主要与氨基酸及其衍生物代谢、多酚物质代谢等代谢途径有关。【结论】利用LC-MS技术可以有效地对鲜叶组、揉捻叶组与晒青叶组进行区分,证明代谢组学技术在一定程度上可以揭示晒青毛茶在加工过程中内含代谢物的化学变化规律。研究发现的晒青毛茶品质形成关键代谢物,可为晒青品质的评价指标体系建立提供理论依据。
戴宇樵,吕才有,何鲁南,易超,刘学艳,黄雯,陈加敏. 基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化[J]. 中国农业科学, 2020, 53(2): 357-370.
DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics[J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
表2
差异代谢物种类与变化情况"
序号 No. | 代谢物种类 Species of metabolites | 总数 Amount | 上调数量 Increase the number | 下调数量 Reduce the number |
---|---|---|---|---|
1 | 脂质类Lipids | 44 | 37 | 7 |
2 | 氨基酸及其衍生物Amino acid and its derivatives | 27 | 23 | 4 |
3 | 黄酮类Flavone | 25 | 19 | 6 |
4 | 核苷酸及其衍生物Nucleotide and its derivates | 18 | 18 | 0 |
5 | 苯甲酸及其衍生物Benzoic acid and its derivatives | 6 | 5 | 1 |
6 | 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives | 11 | 8 | 3 |
7 | 有机酸及其衍生物Organic acids | 15 | 10 | 5 |
8 | 维生素Vitamins | 4 | 2 | 2 |
9 | 儿茶素及其衍生物Catechin and its derivatives | 1 | 1 | 0 |
10 | 花青素Anthocyanins | 2 | 0 | 2 |
11 | 生物碱Alkaloids | 1 | 1 | 0 |
12 | 胆碱类Cholines | 3 | 2 | 1 |
13 | 酚胺Phenolamides | 3 | 3 | 0 |
14 | 糖类Carbohydrates | 2 | 2 | 0 |
15 | 萜类Terpenoids | 1 | 0 | 1 |
16 | 吡啶Pyridine derivatives | 1 | 1 | 0 |
17 | 奎宁酸及其衍生物Quinate and its derivatives | 2 | 1 | 1 |
18 | 香豆素及其衍生物Coumarins | 3 | 3 | 0 |
19 | 色胺及其衍生物Tryptamine derivatives | 1 | 0 | 1 |
表3
鲜叶、揉捻叶和晒青叶组间儿茶素类代谢物差异"
序号 No. | 保留时间 Retention time (min) | 代谢物 Metabolites | YK10-1 | YK10-2 | YK10-3 | 类型 Type |
---|---|---|---|---|---|---|
1 | 2.53 | 咖啡酰原儿茶酸 Protocatechuic acid O-glucoside | 1050333.33±217647.27 | 6006666.67±575528.74 | 9486666.67±5827661.05 | 上调 Up |
2 | 3.05 | 原儿茶醛Protocatechuic aldehyde | 55100±7100 | 72833.33±3499.05 | 101300±7291.78 | 上调 Up |
3 | 4.02 | 4-甲基儿茶酚4-Methylcatechol | 15433.33±1767.30 | 24200±3143.25 | 24633.33±1703.92 | 上调 Up |
4 | 2.38 | 二没食子儿茶素 Gallocatechin-gallocatechin | 529666.67±85242.79 | 590000±43347.43 | 582000±71021.12 | 上调 Up |
5 | 3.49 | 没食子儿茶素-儿茶素 Gallocatechin-catechin | 6836.67±1506.40 | 4870±1384.59 | 2560±2470.49 | 下调 Down |
6 | 2.3 | 原儿茶酸Protocatechuic acid | 194000±15394.80 | 196666.67±26764.40 | 123900±41179.24 | 下调 Down |
7 | 3.51 | 三儿茶素Catechin-catechin-catechin | 3713333.33±385010.82 | 3863333.33±346458.27 | 3073333.33±213853.53 | 下调 Down |
8 | 3.45 | 表儿茶素表阿夫儿茶精 Epicatechin-epiafzelechin | 281000±22869.19 | 281666.67±54811.80 | 253000±26000 | 下调 Down |
9 | 2.99 | 儿茶素Catechin | 3960000±240208.24 | 3890000±208086.52 | 3650000±715821.21 | 下调 Down |
10 | 2.44 | 没食子儿茶素(+)-Gallocatechin (GC) | 1576666.67±63508.53 | 1376666.67±56862.41 | 1470000±78102.50 | 下调 Down |
11 | 2.53 | 表没食子酸儿茶素 Epigallocatechin (EGC) | 1500000±80000 | 1313333.33±50332.23 | 1400000±52915.03 | 下调 Down |
12 | 3.18 | 表儿茶素L-Epicatechin | 3306666.67±117189.31 | 3316666.67±138684.29 | 3146666.67±565803.26 | 下调 Down |
13 | 3.28 | 表没食子酸儿茶素没食子酸酯Epigallate catechin gallate (EGCG) | 3886666.67±210792.16 | 4140000±186815.42 | 3766666.67±213853.53 | 下调 Down |
14 | 3.83 | 表儿茶素没食子酸 Epicatechin gallate (ECG) | 15666666.67±808290.38 | 15900000±529150.26 | 15300000±608276.25 | 下调 Down |
表4
鲜叶、揉捻叶和晒青叶组间黄酮与黄酮醇类代谢物差异"
序号 No. | 保留时间 Retention time (min) | 物质 Metabolites | YK10-1 | YK10-2 | YK10-3 | 类型 Type |
---|---|---|---|---|---|---|
1 | 6.73 | 白杨素Chrysin | 0±0.00 | 8880±782.37 | 14883.33±5566.49 | 上调 Up |
2 | 330.2 | 丁香亭Syringetin | 4490±1406.84 | 17366.67±782.37 | 33666.67±12483.72 | 上调 Up |
3 | 5.08 | 槲皮素Quercetin | 3046666.67±336501.61 | 10096666.67±505008.25 | 13400000±1907878.40 | 上调 Up |
4 | 5.08 | 桑色素水合物Morin | 2883333.33±361155.55 | 9653333.33±609289.20 | 12400000±1708800.75 | 上调 Up |
5 | 4.58 | 二氢山奈酚Aromadedrin (Dihydrokaempferol) | 978666.67±132673.79 | 3026666.67±206478.41 | 3600000±170880.07 | 上调 Up |
6 | 5.69 | 山奈酚Kaempferol | 3753333.33±480555.23 | 10603333.33±1347973.79 | 12543333.33±3894051.02 | 上调 Up |
7 | 5.73 | 金圣草(黄)素Chrysoeriol | 369666.67±37581.02 | 939666.67±42770.71 | 1196666.67±90737.72 | 上调 Up |
8 | 5.81 | 异鼠李素Isorhamnetin | 12453.33±3177.19 | 14000000±1708800.75 | 37733.33±5131.60 | 上调 Up |
9 | 5.86 | 3,7-二氧-甲基槲皮素 Di-O-methylquercetin | 136666.67±30022.21 | 249666.67±19655.36 | 353000±17435.60 | 上调 Up |
10 | 6.98 | 金合欢素Acacetin | 12046.67±2802.59 | 240000±20297.78 | 29700±2600 | 上调 Up |
11 | 5.62 | 芹菜素Apigenin | 504666.67±72507.47 | 829333.33±64002.60 | 1234666.67±390800.89 | 上调 Up |
12 | 7.23 | 毡毛美洲茶素Velutin | 1983.33±221.89 | 5923.33±2653.72 | 4543.33±320.36 | 上调 Up |
13 | 7.17 | 华良姜素Kumatakenin | 13866.67±1193.04 | 46366.67±27164.38 | 30333.33±1858.31 | 上调 Up |
14 | 3.54 | 异鼠李素-3-O-新橙皮糖苷 Isorhamnetin 3-O-neohesperidoside | 519666.67±198807.28 | 303333.33±51964.73 | 216333.33±62043.00 | 下调 Down |
15 | 4.02 | 芹菜素 7-O-新橘皮糖苷 (野漆树苷) Apigenin 7-O-neohesperidoside (Rhoifolin) | 15966666.67±3807011.08 | 10786666.67±920072.46 | 6953333.33±1276727.59 | 下调 Down |
表5
鲜叶、揉捻叶和晒青叶组间氨基酸及其衍生物类代谢物差异"
序号 No. | 保留时间 Retention time (min) | 物质 Metabolites | YK10-1 | YK10-2 | YK10-3 | 类型 Type |
---|---|---|---|---|---|---|
1 | 0.79 | 天门冬氨酸 二葡糖苷 Aspartic acid di-O-glucoside | 567000±31000 | 2093333.33±218250.62 | 2993333.33±685298.00 | 上调 Up |
2 | 1.24 | L-亮氨酸 Aspartic acid di-O-glucoside | 192000±27874.72 | 1002666.67±33842.77 | 990333.33±37287.17 | 上调 Up |
3 | 1.14 | L-(-)-酪氨酸L-(-)-Tyrosine | 867000±70149.84 | 3750000±193132.078 | 4370000±167032.93 | 上调 Up |
4 | 1.23 | L-异亮氨酸L-Isoleucine | 103766.67±17417.33 | 499333.33±21501.94 | 500000±15394.80 | up |
5 | 1.97 | L-苯丙氨酸L-Phenylalanine | 528000±39949.97 | 2470000±115325.63 | 2420000±115325.63 | 上调 Up |
6 | 0.8 | 2-氨基己二酸 (L-高谷氨酸) 2-Aminoadipic acid (L-Homoglutamic acid) | 330000±11357.82 | 1270000±155241.75 | 1420000±36055.51 | 上调 Up |
7 | 0.84 | 缬氨酸Dl-Norvaline | 8706666.67±428524.60 | 35466666.67±3720663.02 | 34933333.33±1871719.35 | 上调 Up |
8 | 0.84 | L-缬氨酸L-Valine | 1953333.33±132035.35 | 7136666.67±828573.07 | 7423333.33±460470.77 | 上调 Up |
9 | 0.71 | L-酵母氨酸L-Saccharopine | 181000±16522.71 | 773333.33±61174.61 | 667333.33±122964.76 | 上调 Up |
10 | 0.68 | L-(+)-赖氨酸L-(+)-Lysine | 8870000±478852.80 | 31666666.67±642910.05 | 31300000±3122499.00 | 上调 Up |
11 | 0.81 | DL-高半胱氨酸DL-homocysteine | 139333.33±11015.14 | 461333.33±47077.95 | 479333.33±25696.95 | 上调 Up |
12 | 1.21 | DL-多巴 3,4-Dihydroxy-DL-phenylalanine | 4706.67±2740.55 | 14033.33±3362.04 | 15800±4253.23 | 上调 Up |
13 | 0.65 | 蛋氨酸亚砜Methionine sulfoxide | 152333.33±25658.01 | 639000±11135.53 | 507000±37643.06 | 上调 Up |
14 | 0.72 | L-谷氨酸 O-己糖苷 L-Glutamic acid O-glucoside | 43066.67±3027.10 | 62033.33±13041.60 | 140333.33±5131.60 | 上调 Up |
15 | 0.73 | L-天冬酰胺L-Asparagine | 126666.67±16258.33 | 420333.33±73493.76 | 407666.67±48675.80 | 上调 Up |
16 | 1.24 | S-甲基谷胱甘肽 S-(methyl) glutathione | 6613.33±2116.63 | 8910±2098.36 | 19900±2128.38 | 上调 Up |
17 | 0.74 | 同型丝氨酸L-Homoserine | 12933.33±2967.04 | 26400±3751.00 | 38800±5350.70 | 上调 Up |
18 | 0.68 | L-组氨酸L-Histidine | 1153333.33±76376.26 | 3736666.67±265015.72 | 3280000±360555.13 | 上调 Up |
19 | 3.52 | L-苯丙氨酸-L-苯丙氨酸Phe-Phe | 42533.33±7850.05 | 144333.33± | 109433.33±25162.74 | 上调 Up |
20 | 0.77 | L-(-)-胱氨酸L-(-)-Cystine | 30866.67±11184.07 | 24200±7937.88 | 69866.67±14216.31 | 上调 Up |
21 | 2.05 | N′-甲酰基犬尿氨酸 N′-Formylkynurenine | 705333.33±111540.73 | 612333.33±25890.80 | 1593333.33±56862.41 | 上调 Up |
22 | 0.81 | 高胱氨酸L-Homocystine | 1593333.33±3646.00 | 51466.67±17333.88 | 61366.67±9022.38 | 上调 Up |
23 | 1.93 | N-甘氨酰-L-亮氨酸 N-Glycyl-L-leucine | 32666.67±2668.96 | 78633.33±5641.22 | 67333.33±6493.33 | 上调 Up |
24 | 1.14 | 谷胱甘肽还原型 Glutathione reduced form | 135733.33±92073.96 | 447000±303605.01 | 34066.67±12702.10 | 下调 Down |
25 | 0.74 | 2-氨基异丁酸 2-Aminoisobutyric acid | 64700000±4853864.44 | 23033333.33±1331665.62 | 25333333.33±2683902.63 | 下调 Down |
26 | 2.43 | N-乙酰基蛋氨酸 N-Acetylmethionine | 147233.33±46476.48 | 111666.67±9712.53 | 66400±2066.40 | 下调 Down |
27 | 0.99 | L-茶氨酸L-Theanine | 3820000±137356 | 4600000±558748.60 | 4490000±331763 | 上调 Up |
28 | 0.77 | γ-氨基丁酸γ-aminobutyric acid | 1903333.33±295014.13 | 5510000±508625.60 | 5783333.33±508625.60 | 下调 Down |
表6
鲜叶、揉捻叶和晒青叶组间生物碱代谢物差异"
序号 No. | 保留时间 Retention time (min) | 物质 Metabolite | YK10-1 | YK10-2 | YK10-3 | 类型 Type |
---|---|---|---|---|---|---|
1 | 1.16 | 哌啶Piperidine | 5443333.33±494098.51 | 19800000±1873499.4 | 18500000±781024.97 | 上调 Up |
2 | 0.79 | 葫芦巴碱Trigonelline | 164666.67±54993.94 | 318000±125391.39 | 308666.67±112669.13 | 上调 Up |
3 | 0.78 | 甜菜碱Betaine | 13733333.33±929157.32 | 17566666.67±1833939.29 | 24300000±12931743.89 | 上调 Up |
4 | 2.64 | 茶碱Theophylline | 6455066.67±578935.03 | 7286366.67±194360.4 | 6545566.67±1001309.43 | 上调 Up |
5 | 1.45 | 大麦芽碱Hordenine | 417333.33±33246.55 | 472333.33±66905.41 | 391000±34655.45 | 下调 Down |
6 | 3.14 | 咖啡碱Caffeine | 6883000±232758.27 | 6826466.67±97485.61 | 6241100±380824.22 | 下调 Down |
7 | 4.64 | 异喹啉Isoquinoline | 112366.67±24056.25 | 119466.67±28075.85 | 88566.67±3442.87 | 下调 Down |
8 | 2.38 | 可可碱Theobromine | 7260000±401497.2 | 6323333.33±230289.67 | 5460000±326955.65 | 下调 Down |
[1] | GB/T 22111普洱茶[S], 2008. |
GB/T 22111 Pu'er Tea[S], 2008. (in Chinese) | |
[2] | 董登峰 . 代谢物组学方法及其在植物学研究中的应用. 广西植物, 2007, 27(5): 765-769. |
DONG D F . Metabolomic methods and their applications in botanical research.Guangxi Plant, 2007, 27(5): 765-769. (in Chinese) | |
[3] | 赵峰, 林河通, 杨江帆, 叶乃兴, 俞金朋. 基于近红外光谱的武夷岩茶品质成分在线检测. 农业工程学报, 2014, 30(2): 269-277. |
ZHAO F, LIN H T, YANG J F, YE N X, YU J P.Online quantitative determination of Wuyi Rock Tea quality compounds by near infrared spectroscopy.Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 269-277. (in Chinese) | |
[4] | 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012. |
WANG X M.Metabolic spectrum analysis and quality formation mechanism of Tuen Mun black tea during processing [D]. Hefei: Anhui Agricultural University, 2012. (in Chinese) | |
[5] | 解东超, 戴伟东, 李朋亮, 谭俊峰, 林智. 基于LC-MS的紫娟烘青绿茶加工过程中花青素变化规律研究. 茶叶科学, 2016, 36(6): 603-612. |
XIE D C, DAI W D, LI P L, TAN J F, LIN Z.Study on the compositions and dynamic changes of anthocyanins during the manufacturing process of ‘Zijuan’ baked green tea. Journal of Tea Science, | |
2016, 36(6): 603-612. (in Chinese) | |
[6] | 米雨荷. 茶叶中生物胺UPLC检测方法的建立及加工工艺对其含量的影响[D]. 南京: 南京农业大学, 2016. |
MI Y H.Establishment of UPLC detection method for tea and determination of its processing content[D].Nanjing: Nanjing Agricultural University,2016. (in Chinese) | |
[7] | 伍岗, 夏锐, 张艳梅, 梁家彬, 李梅, 浦绍柳. SPME-GC-MS测定4种云南茶的香气成分. 西南农业学报, 2016, 29(8): 1993-1997. |
WU G, XIA R, ZHANG Y M, LIANG J B, LI M, PU S L.Analysis of aromatic components in four kinds of Yunnan tea by SPME-GC-MS.Southwest China Journal of Agricultural Sciences, 2016, 29(8): 1993-1997. (in Chinese) | |
[8] | LI Z Y, FENG C X, LUO X G, YAO H L, ZHANG D C, ZHANG T C.Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis.Food Microbiology, 2018, 76: 405-415. |
[9] | KU K M, KIM J Y, PARK H J, LIU K H, LEE C H.Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year.Journal of Agricultural and Food Chemistry, 2010, 58: 345-352. |
[10] | YUE W J, SUN W J, RAO R S P, YE N X, YANG Z B, CHEN M J . Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea.Food Chemistry, 2018, 277: 289-297. |
[11] | ZHAO F, QIU X H, YE N X, QIAN J, WANG D H, ZHOU P, CHEN M J.Hydrophilic interaction liquid chromatography coupled with quadrupoleorbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process.Food Chemistry, 2018, 266: 343-349. |
[12] | WANG T, LI X L, YANG H C, WANG F, KONG J P, QIU D, LI Z.Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins.Food Chemistry, 2018, 268: 271-278. |
[13] | 郑起帆. 基于~1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016. |
ZHENG Q F.Metabolomics study of four tea mountain Pu'er tea based on ~1H-NMR [D]. Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese) | |
[14] | 刘洪林, 童华荣. 高效液相色谱法同时测定工夫红茶中10种内含物成分. 食品科学, 2016, 37(8): 97-101. |
LIU H L, TONG H R.Determination of ten inclusions in Gongfu Black tea by HPLC.Food Science, 2016, 37(8): 97-101. (in Chinese) | |
[15] | 孟怡璠, 杜欢欢, 江海, 耿敬章. UPLC-MS-MS测定红茶中的茶黄素含量农业技术与装备, 2017(7): 9-12, 14. |
MENG Y P, DU H H, JIANG H, GENG J Z.Determination of theaflavin content in black tea by UPLC-MS-MS.Agricultural Technology and Equipment, 2017(7): 9-12, 14. (in Chinese) | |
[16] | 陈秋虹, 黄艳, 周洁洁, 覃祖前, 刘布鸣, 柴玲, 莫建光. 长柱金花茶叶的化学成分研究(Ⅱ). 中草药, 2017, 48(23): 4845-4850. |
CHEN Q H, HUANG Y, ZHOU J J, QIN Z Q, LIU B M, CHAI L, MO J G.Chemical constituents from leaves of Camellia nitidissima var. longistyla(II). Chinese Traditional and Herbal Drugs, 2017, 48(23): 4845-4850. (in Chinese) | |
[17] | 刘盼盼, 龚自明, 高士伟, 郑鹏程, 郑琳. 茶叶香气质量评价方法研究进展. 湖北农业科学, 2016, 55(16): 4085-4089, 4092. |
LIU P P, GONG Z M, GAO S W, ZHENG P C, ZHENG L.Research progress in aroma quality evaluation of tea.Hubei Agricultural Sciences, 2016, 55(16): 4085-4089, 4092. (in Chinese) | |
[18] | 汤莎莎, 芦晨阳, 周君, 韩姣姣, 张红燕, 崔晨茜, 苏秀榕. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质.食品工业科技, 2018, 39(14): 223-230. |
TANG S S, LU C Y, ZHOU J, HAN W, ZHANG H Y, CUI C X, SU X R.Volatile flavor compounds of different Wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS.Science and Technology of Food Industry, 2018, 39(14): 223-230. (in Chinese) | |
[19] | 陈宗懋, 杨亚军.中国茶经.上海:上海文化出版社, 2011: 673-674. |
CHEN Z M, YANG Y J . Chinese Tea Classics.Shanghai:Shanghai Culture Press, 2011: 673-674. (in Chinese) | |
[20] | 田易萍, 徐丕忠, 朱兴正. 国家级茶树良种云抗10号在云南省的应用及推广.现代农业科技, 2011(24): 118-119. |
TIAN Y P, XU P Z, ZHU X Z. Application and popularization of national tea tree variety Yunkang No.10 in Yunnan province. Xiandai Nongye Keji, 2011(24): 118-119. (in Chinese) | |
[21] | CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B.A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics.Molecular Plant, 2013, 6(6): 1769-1780. |
[22] | FRAGA C G, CLOWERS B H, MOORE R J, ZINK E M.Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics.Analytical Chemistry, 2010, 82(10): 4165-4173. |
[23] | CHEN Y H, ZHANG R P, SONG Y M, HE J M, SUN J H, BAI J F, AN Z L, DONG L J, ZHAN Q M, ABLIZ Z.RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer.The Analyst, 2009, 134(10): 2003-2011. |
[24] | 宛晓春. 茶叶生物化学. 北京:中国农业出版社, 2003: 11-35. |
WAN X C . Tea Biochemistry[D]. Beijing: China Agriculture Press,2003: 11-35. (in Chinese) | |
[25] | 杨新河. 普洱茶色素提取、分级及生物活性研究[D]. 长沙: 湖南农业大学, 2011. |
YANG X H . Extraction, grading and bioactivity of Pu'er tea pigment [D]. Changsha: Hunan Agricultural University, 2011. (in Chinese) | |
[26] | 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6): 1066-1077. |
CHEN Q C, DAI W D, LIN Z Y, JIE D C, LV M L, LIN z. Effects of shading on main quality components in tea (Camellia Sinensis (L) O. Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese) | |
[27] | 吕以仙. 有机合成基础第七版. 北京: 人民卫生出版社,2008: 161-165. |
LÜ Y X.The Basis of Organic Synthesis, 7th edition. Beijing: People’s Medical Publishing House,2008: 161-165. (in Chinese) | |
[28] | 许伟, 彭影琦, 张拓, 孔莹莹, 肖文军. 绿茶加工中主要滋味物质动态变化及其对绿茶品质的影响. 食品科学, 2019, 40(11): 36-41. |
XU W, PENG Y Q, ZHANG T, KONG Y Y, XIAO W J.Dynamic changes of major taste substances during green tea processing and its impact on green tea quality. Food Science, 2019, 40(11): 36-41. (in Chinese) |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[4] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[5] | 韩晓, 杨航宇, 陈为凯, 王军, 何非. 不同砧木对欧亚种葡萄‘丹娜’果实类黄酮物质的影响[J]. 中国农业科学, 2022, 55(10): 2013-2025. |
[6] | 王爱华,马红叶,李荣飞,杨仕品,乔荣,钟霈霖. 凤梨草莓与黄毛草莓种间杂种果实香气成分的代谢谱分析[J]. 中国农业科学, 2021, 54(5): 1043-1054. |
[7] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[8] | 袁平丽,何楠,赵胜杰,路绪强,朱红菊,刁卫楠,龚成胜,MUHAMMAD Jawad Umer,刘文革. 籽瓜、黏籽和普通西瓜的果实代谢组比较[J]. 中国农业科学, 2021, 54(19): 4179-4195. |
[9] | 虞龙涛,杨何妍,苏宇晨,颜伟玉,吴小波. 基于LC-MS技术研究氟氯苯氰菊酯对西方蜜蜂工蜂幼虫代谢的影响[J]. 中国农业科学, 2021, 54(12): 2689-2698. |
[10] | 赵文华,王桂瑛,荀文,俞媛瑞,葛长荣,廖国周. 基于代谢组学筛选表征茶花鸡肌肉中特征风味的水溶性化合物[J]. 中国农业科学, 2020, 53(8): 1627-1642. |
[11] | 孙永波,王亚,萨仁娜,张宏福. GC-MS分析慢性氨气应激对肉鸡血清代谢物的影响[J]. 中国农业科学, 2020, 53(8): 1688-1698. |
[12] | 许颖,严常燕,杨伟聪,张云晓,于洋,黄显会. 金霉素微囊颗粒在猪体内的比较药动学研究[J]. 中国农业科学, 2020, 53(19): 4083-4091. |
[13] | 张丽翠,马川,冯毛,李建科. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学, 2020, 53(18): 3833-3845. |
[14] | 周志,刘扬,张黎明,许锐能,孙丽莉,廖红. 武夷茶区茶园土壤养分状况及其对茶叶品质成分的影响[J]. 中国农业科学, 2019, 52(8): 1425-1434. |
[15] | 陈勤操,戴伟东,蔺志远,解东超,吕美玲,林智. 代谢组学解析遮阴对茶叶主要品质成分的影响[J]. 中国农业科学, 2019, 52(6): 1066-1077. |
|