中国农业科学 ›› 2022, Vol. 55 ›› Issue (4): 769-784.doi: 10.3864/j.issn.0578-1752.2022.04.012
彭佳堃1,2(),戴伟东1(
),颜涌泉3,张悦1,陈丹1,董明花3,吕美玲4,林智1(
)
收稿日期:
2021-04-07
接受日期:
2021-07-01
出版日期:
2022-02-16
发布日期:
2022-02-23
通讯作者:
戴伟东,林智
作者简介:
彭佳堃,E-mail: 基金资助:
PENG JiaKun1,2(),DAI WeiDong1(
),YAN YongQuan3,ZHANG Yue1,CHEN Dan1,DONG MingHua3,LÜ MeiLing4,LIN Zhi1(
)
Received:
2021-04-07
Accepted:
2021-07-01
Online:
2022-02-16
Published:
2022-02-23
Contact:
WeiDong DAI,Zhi LIN
摘要:
【目的】不同茶树品种制作的乌龙茶风味品质和内含成分具有明显差异。本研究结合非靶向代谢组学、化合物定量分析、多元统计学等方法比较‘永春佛手’‘铁观音’和‘水仙’乌龙茶的化学成分差异,分析‘永春佛手’乌龙茶的特征性化学成分,并探讨茶树品种对乌龙茶内含成分和感官品质的影响。【方法】以‘永春佛手’品种为主要研究对象,‘铁观音’和‘水仙’品种为对照,三者均加工制成清香型、浓香型和陈香型乌龙茶,采用超高效液相色谱-四级杆-飞行时间质谱(UHPLC-Q-TOF/MS)进行非靶向代谢组学分析,对不同品种乌龙茶的差异化合物进行鉴定和筛选,并采用超高效液相色谱仪、氨基酸分析仪和超高效液相色谱-四极杆-静电场轨道阱质谱(UHPLC-Q-Orbitrap-MS)对茶叶中主要化学成分和不同品种乌龙茶间差异化合物进行定量分析。【结果】相比于同一香型的对照品种乌龙茶,‘永春佛手’具有相对较高的氨基酸总量和茶氨酸含量,儿茶素类化合物总量和咖啡碱含量在清香型和浓香型的不同品种间无显著差异,在陈香型中均以‘永春佛手’乌龙茶含量最高,没食子酸含量在3种香型中均呈现‘水仙’>‘永春佛手’>‘铁观音’。代谢组学结合多变量统计表明,不同品种制成的乌龙茶化合物表型具有明显差异。清香型、浓香型和陈香型乌龙茶中,‘永春佛手’与对照品种乌龙茶间的差异化合物分别为50、59、47个,其中共同差异化合物有23个,包括14个黄酮(醇)糖苷、5个儿茶素类化合物及其衍生物、1个脂类、1个生物碱、1个有机酸和1个氨基酸类化合物。进一步对茶叶中常见的20个黄酮(醇)糖苷组分进行定量分析,结果显示‘永春佛手’乌龙茶中14个黄酮(醇)糖苷组分的含量显著高于对照品种乌龙茶,其含量是相同香型‘铁观音’品种乌龙茶的1.4—14.6倍,是‘水仙’品种乌龙茶的1.3—18.0倍。在定量的4类黄酮(醇)糖苷中,槲皮素糖苷均为主要的黄酮(醇)糖苷组分,含量高于山柰酚糖苷、杨梅素糖苷和芹菜素糖苷。感官审评分析表明较高含量的黄酮(醇)糖苷并未显著增强茶汤的涩味。【结论】代谢组学方法可以有效地对不同品种制作的乌龙茶进行化合物表征。‘永春佛手’‘铁观音’和‘水仙’按照相同工艺制成的乌龙茶具有较为明显的化学成分差异,其中黄酮(醇)糖苷类化合物差异最为显著,具有较高含量的黄酮(醇)糖苷类成分是‘永春佛手’乌龙茶在化学成分方面的一个重要特征。黄酮(醇)糖苷类成分有望作为判别指标用于乌龙茶制作品种的判别。
彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784.
PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics[J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
表1
不同品种制成的3种香型乌龙茶氨基酸含量"
含量 Content (mg·g-1) | 清香型乌龙茶 Fresh-scent oolong tea | 浓香型乌龙茶 Strong-scent oolong tea | 陈香型乌龙茶 Aged-scent oolong tea | ||||||
---|---|---|---|---|---|---|---|---|---|
永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | |
茶氨酸 Theanine | 7.66±3.68a | 4.96±0.31a | 5.45±0.38a | 2.14±2.60a | 1.32±0.21a | 1.39±0.34a | 2.28±0.19a | 0.96±0.04b | 0.74±0.35b |
天冬氨酸 Aspartic acid | 1.21±0.48a | 0.91±0.05a | 1.27±0.08a | 0.66±0.43a | 0.43±0.03b | 0.13±0.03c | 0.49±0.05a | 0.31±0.03b | 0.27±0.04b |
苏氨酸 Threonine | 0.27±0.12a | 0.23±0.01a | 0.24±0.04a | 0.12±0.10a | 0.10±0.02a | 0.00±0.00b | 0.11±0.03a | 0.05±0.01b | 0.03±0.03b |
丝氨酸 Serine | 0.38±0.12a | 0.32±0.02a | 0.30±0.06a | 0.16±0.14a | 0.15±0.04a | 0.01±0.01b | 0.15±0.07a | 0.07±0.02a | 0.05±0.02a |
天冬酰胺 Asparagine | 0.23±0.34b | 0.00±0.00c | 0.66±0.08a | 0.14±0.17a | 0.00±0.00b | 0.05±0.05a | 0.00±0.00a | 0.00±0.00a | 0.05±0.09a |
谷氨酸 Glutamic acid | 1.23±0.42a | 1.28±0.09a | 1.01±0.12a | 0.33±0.44a | 0.41±0.10a | 0.00±0.00b | 0.49±0.09a | 0.19±0.04b | 0.12±0.10b |
谷氨酰胺 Glutamine | 0.29±0.16a | 0.11±0.01b | 0.24±0.05a | 0.05±0.13a | 0.06±0.07a | 0.00±0.00b | 0.00±0.00a | 0.02±0.03a | 0.00±0.00a |
脯氨酸 Proline | 0.02±0.02a | 0.02±0.03a | 0.01±0.02a | 0.01±0.02a | 0.01±0.01a | 0.00±0.00b | 0.02±0.01a | 0.02±0.03a | 0.02±0.03a |
甘氨酸 Glycine | 0.03±0.02a | 0.02±0.02a | 0.04±0.02a | 0.01±0.02a | 0.00±0.00b | 0.00±0.00b | 0.02±0.04a | 0.00±0.00a | 0.00±0.00a |
丙氨酸 Alanine | 0.15±0.03a | 0.18±0.05a | 0.14±0.05a | 0.11±0.08a | 0.10±0.01a | 0.01±0.01b | 0.14±0.04a | 0.09±0.01a | 0.08±0.00a |
缬氨酸 Valine | 0.15±0.09a | 0.13±0.02a | 0.06±0.10a | 0.07±0.07a | 0.02±0.02b | 0.00±0.00c | 0.04±0.04a | 0.01±0.01a | 0.01±0.01a |
胱氨酸 Cystine | 0.11±0.14a | 0.11±0.02a | 0.06±0.05a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a |
蛋氨酸 Methionine | 0.01±0.02a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a |
异亮氨酸 Isoleucine | 0.10±0.06b | 0.09±0.01b | 0.18±0.01a | 0.05±0.05a | 0.04±0.01a | 0.00±0.00b | 0.05±0.01a | 0.04±0.01a | 0.02±0.02a |
亮氨酸 Leucine | 0.13±0.06ab | 0.10±0.01b | 0.19±0.00a | 0.07±0.06a | 0.05±0.02a | 0.00±0.00b | 0.10±0.03a | 0.08±0.03a | 0.05±0.05a |
酪氨酸 Tyrosine | 0.13±0.04b | 0.09±0.00c | 0.25±0.03a | 0.06±0.06a | 0.02±0.02b | 0.00±0.00c | 0.10±0.02a | 0.03±0.03b | 0.01±0.01b |
苯丙氨酸 Phenylalanine | 0.55±0.13a | 0.37±0.05b | 0.47±0.08a | 0.39±0.28a | 0.25±0.04a | 0.00±0.00b | 0.37±0.05a | 0.29±0.06a | 0.17±0.15a |
γ-氨基丁酸 γ-aminobutyric acid | 0.30±0.10a | 0.08±0.01c | 0.15±0.01b | 0.13±0.10a | 0.04±0.04a | 0.04±0.02a | 0.11±0.10a | 0.04±0.03a | 0.03±0.00a |
组氨酸 Histidine | 0.09±0.03a | 0.08±0.02a | 0.12±0.02a | 0.04±0.05a | 0.04±0.01a | 0.00±0.00b | 0.03±0.03a | 0.01±0.01a | 0.01±0.01a |
色氨酸 Tryptophan | 0.24±0.10b | 0.28±0.11ab | 0.40±0.05a | 0.09±0.09a | 0.11±0.06a | 0.00±0.00b | 0.12±0.04a | 0.08±0.04a | 0.04±0.04a |
赖氨酸 Lysine | 0.30±0.12ab | 0.21±0.06b | 0.49±0.09a | 0.30±0.18a | 0.19±0.07a | 0.27±0.12a | 0.42±0.28a | 0.23±0.10a | 0.19±0.07a |
精氨酸 Arginine | 0.25±0.17b | 0.13±0.03b | 0.59±0.01a | 0.16±0.13a | 0.00±0.00b | 0.00±0.00b | 0.20±0.22a | 0.09±0.08a | 0.19±0.11a |
氨基酸总量 Total amino acid | 13.82±5.04a | 9.70±0.72a | 12.29±0.05a | 5.10±4.48a | 3.34±0.69a | 1.45±0.33b | 5.25±0.26a | 2.59±0.33b | 2.07±0.64b |
表2
不同品种制成的3种香型乌龙茶儿茶素、咖啡碱和没食子酸含量"
含量 Content (mg·g-1) | 清香型乌龙茶 Fresh-scent oolong tea | 浓香型乌龙茶 Strong-scent oolong tea | 陈香型乌龙茶 Aged-scent oolong tea | ||||||
---|---|---|---|---|---|---|---|---|---|
永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | |
表没食子儿茶素没食子酸酯 EGCG | 65.44±10.69c | 72.88±0.04b | 81.89±0.22a | 54.68±10.66a | 68.16±0.15a | 36.46±0.09b | 50.68±0.05a | 37.00±0.11b | 31.87±0.06c |
没食子儿茶素没食子酸酯 GCG | 2.11±0.35a | 1.54±0.01b | 0.42±0.06c | 3.48±1.54a | 1.59±0.01a | 3.22±0.01a | 1.48±0.02b | 0.97±0.01c | 2.49±0.01a |
表儿茶素没食子酸酯 ECG | 20.20±4.39a | 18.94±0.02a | 22.46±0.06a | 16.47±4.13a | 16.87±0.03a | 10.02±0.02b | 13.15±0.01a | 8.77±0.02c | 9.70±0.02b |
儿茶素没食子酸酯 CG | 7.50±0.98a | 5.33±0.01b | 3.28±0.04c | 6.58±1.10a | 4.47±0.01b | 2.66±0.03c | 4.31±1.23a | 1.43±0.09c | 2.61±0.00b |
酯型儿茶素总量 Total gallated- type catechins | 95.24±16.02b | 98.70±0.07b | 108.06±0.30a | 81.20±15.66a | 91.09 ± 0.19a | 52.36 ± 0.14b | 69.60±1.21a | 48.17±0.17b | 46.66±0.08b |
表没食子儿 茶素 EGC | 48.77±8.36a | 39.76±0.33a | 40.82±0.36a | 31.29±10.95a | 31.80±0.82a | 12.00±0.22b | 22.00±0.27a | 15.87±0.16b | 10.90±0.44c |
没食子儿茶素 GC | 2.40±0.41a | 1.60±0.09b | 2.51±0.01a | 6.48±2.34a | 5.66±0.01a | 8.30±0.03a | 0.99±0.04b | 0.76±0.02c | 2.23±0.46a |
表儿茶素 EC | 13.72±2.12a | 10.40±0.00b | 9.60±0.02b | 9.42±3.65a | 8.96±0.01a | 2.83±0.02b | 6.73±0.50a | 3.18±0.01b | 2.46±0.01c |
儿茶素 C | 4.98±2.45b | 2.58±0.11b | 8.33±0.06a | 6.26±3.26a | 3.30±0.60a | 2.89±0.05a | 3.81±0.08a | 2.11±0.04c | 3.17±0.44b |
非酯型儿茶素总量 Total non-gallated- type catechins | 69.88±10.51a | 54.33±0.17b | 61.26±0.32a | 53.44±11.78a | 49.72±1.41a | 26.01±0.22b | 33.53±0.44a | 21.92±0.13b | 18.76±0.65b |
儿茶素总量 Total catechins | 165.13±25.23a | 153.02±0.11a | 169.32±0.62a | 134.64±26.84a | 140.82±1.54a | 78.37±0.36b | 103.13±0.83a | 70.09±0.30b | 65.43±0.73c |
咖啡碱 Caffeine | 25.20±4.67a | 26.32±0.09a | 30.81±0.08a | 25.89±4.68a | 26.70±0.07a | 22.44±0.05a | 27.40±0.02a | 20.92±0.03c | 27.26±0.06b |
没食子酸 Gallic acid | 0.53±0.25b | 0.19±0.00c | 1.26±0.05a | 1.73±0.89b | 0.93±0.02b | 3.22±0.01a | 2.32±0.00b | 2.23±0.01c | 5.32±0.02a |
表3
3种香型乌龙茶中总黄酮及其黄酮(醇)糖苷组分定量"
含量 Content(mg·g-1) | 清香型乌龙茶 Fresh-scent oolong tea | 浓香型乌龙茶 Strong-scent oolong tea | 陈香型乌龙茶 Aged-scent oolong tea | ||||||
---|---|---|---|---|---|---|---|---|---|
永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | 永春佛手 YCFS | 铁观音 TGY | 水仙 SX | |
总黄酮 Total flavone | 36.84±2.91a | 27.87±2.05b | 29.78±2.24b | 38.11±3.51a | 28.00±2.56b | 23.83±1.37b | 26.28±1.09a | 16.82±0.86b | 15.79±0.50b |
槲皮素 3-O-半乳糖酰芸香糖苷 Quercetin 3-O-galactosylrutinoside | 0.41±0.04a | 0.14±0.01b | 0.40±0.01a | 0.35±0.06a | 0.14±0.01b | 0.15±0.00b | 0.30±0.00a | 0.25±0.00b | 0.20±0.01b |
槲皮素 3-O-葡萄糖酰芸香糖苷 Quercetin 3-O-glucosylrutinoside | 2.04±0.18a | 0.85±0.04b | 1.00±0.02b | 1.72±0.25a | 0.80±0.03b | 0.73±0.02b | 1.72±0.02a | 1.21±0.04b | 1.14±0.03b |
槲皮素 3-O-芸香糖苷* Quercetin 3-O-rutinoside* | 1.43±0.12a | 0.58±0.03b | 0.95±0.03b | 1.18±0.22a | 0.52±0.02b | 0.66±0.02b | 0.95±0.01a | 0.68±0.02b | 0.74±0.03b |
槲皮素 3-O-半乳糖苷* Quercetin 3-O-galactose* | 2.66±0.52a | 0.60±0.03b | 2.94±0.07a | 2.09±0.55a | 0.57±0.02b | 0.61±0.02b | 1.33±0.03a | 1.21±0.18a | 1.03±0.02b |
槲皮素 3-O-葡萄糖苷* Quercetin 3-O-glucoside* | 0.98±0.13a | 0.19±0.01b | 0.58±0.03b | 0.80±0.20a | 0.16±0.01b | 0.19±0.00b | 0.61±0.01a | 0.33±0.01b | 0.49±0.01b |
山柰酚 3-O-半乳糖酰芸香糖苷 Kaempferol 3-O-galactosylrutinoside | 0.26±0.08a | 0.04±0.00b | 0.42±0.01b | 0.22±0.06a | 0.05±0.00b | 0.07±0.00b | 0.12±0.00a | 0.11±0.00b | 0.10±0.00b |
山柰酚 3-O-葡萄糖酰芸香糖苷 Kaempferol 3-O-glucosylrutinoside | 2.06±0.41a | 0.38±0.01b | 0.80±0.03b | 1.81±0.33a | 0.35±0.00b | 0.39±0.01b | 1.23±0.00a | 0.76±0.02b | 0.63±0.02b |
山柰酚 3-O-芸香糖苷* Kaempferol 3-O-rutinoside* | 0.70±0.18a | 0.13±0.01b | 0.33±0.01b | 0.61±0.16a | 0.12±0.00b | 0.13±0.00b | 0.34±0.00a | 0.21±0.00b | 0.22±0.00b |
山柰酚 3-O-半乳糖苷* Kaempferol 3-O-galactoside* | 0.35±0.18a | 0.02±0.00b | 0.22±0.01b | 0.30±0.16a | 0.02±0.00b | 0.03±0.00b | 0.14±0.00a | 0.07±0.00b | 0.10±0.00b |
山柰酚 3-O-葡萄糖苷 Kaempferol 3-O-glucoside | 0.02±0.01a | 0.01±0.00b | 0.00±0.00b | 0.01±0.00a | 0.01±0.00b | 0.00±0.00b | 0.02±0.00a | 0.01±0.00b | 0.01±0.00b |
牡荆素* Vitexin* | 0.03±0.00a | 0.01±0.00b | 0.02±0.00b | 0.05±0.01a | 0.01±0.00b | 0.02±0.00b | 0.07±0.00a | 0.04±0.00b | 0.03±0.00b |
异牡荆素* Isovitexin* | 0.88±0.08a | 0.24±0.01b | 0.56±0.00b | 1.30±0.20a | 0.33±0.01b | 0.47±0.00b | 1.76±0.02a | 0.89±0.02b | 0.71±0.01b |
芹菜素 6,8-C-二葡萄糖苷 Apigenin 6,8-C-diglucoside | 0.71±0.09a | 0.24±0.01b | 0.34±0.00b | 0.73±0.19a | 0.25±0.01b | 0.23±0.01b | 0.96±0.01a | 0.53±0.00b | 0.35±0.00b |
芹菜素 6-C-葡萄糖-8-C-阿拉伯糖苷 Apigenin 6-C-glucoside-8-C-arabinoside | 0.11±0.01a | 0.05±0.00b | 0.05±0.00b | 0.08±0.03a | 0.04±0.00b | 0.02±0.00b | 0.15±0.00a | 0.07±0.00b | 0.05±0.00b |
芹菜素 6-C-阿拉伯糖-8-C-葡萄糖苷 Apigenin 6-C-arabinoside-8-C-glucoside | 0.12±0.01a | 0.05±0.00b | 0.06±0.00b | 0.11±0.04a | 0.05±0.00b | 0.02±0.00b | 0.17±0.00a | 0.09±0.00b | 0.06±0.00b |
杨梅素 3-O-半乳糖酰芸香糖苷 Myricetin 3-O-galactosylrutinoside | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a | 0.00±0.00a |
杨梅素 3-O-葡萄糖酰芸香糖苷 Myricetin 3-O-glucosylrutinoside | 0.01±0.00a | 0.00±0.00b | 0.00±0.00b | 0.01±0.00a | 0.00±0.00b | 0.00±0.00b | 0.01±0.00a | 0.01±0.00a | 0.01±0.00a |
杨梅素 3-O-半乳糖苷* Myricetin 3-O-galactoside* | 0.35±0.04a | 0.19±0.01b | 0.11±0.00c | 0.29±0.05a | 0.19±0.01b | 0.09±0.00c | 0.26±0.00a | 0.16±0.01b | 0.10±0.00c |
杨梅素 3-O-芸香糖苷 Myricetin 3-O-rutinoside | 0.09±0.01a | 0.08±0.00a | 0.02±0.00b | 0.07±0.01a | 0.07±0.00a | 0.03±0.00b | 0.07±0.00a | 0.06±0.00a | 0.03±0.00b |
杨梅素 3-O-葡萄糖苷 Myricetin 3-O-glucoside | 0.40±0.04a | 0.27±0.01b | 0.13±0.01c | 0.33±0.05a | 0.24±0.01b | 0.13±0.00c | 0.33±0.01a | 0.21±0.01b | 0.15±0.00c |
[1] |
郭雅玲. 永春佛手茶的品质比较优势研究. 福建茶叶, 2008, 30(1):19-20. doi: 10.3969/j.issn.1005-2291.2008.01.007.
doi: 10.3969/j.issn.1005-2291.2008.01.007 |
GUO Y L. Study on the quality comparative advantages of Yongchun Foshou tea. Tea in Fujian, 2008, 30(1):19-20. doi: 10.3969/j.issn.1005-2291.2008.01.007. (in Chinese)
doi: 10.3969/j.issn.1005-2291.2008.01.007 |
|
[2] | GB/T30357.7 乌龙茶 第七部分: 佛手[S], 2017. |
GB/T30357.7 Oolong Tea Part Seven: Foshou[S], 2017. (in Chinese) | |
[3] |
陈林, 林清霞, 张应根, 陈键, 王丽丽, 余文权, 尤志明. 不同风味类型铁观音乌龙茶香气组成化学模式识别研究. 茶叶科学, 2018, 38(3):253-262. doi: 10.3969/j.issn.1000-369X.2018.03.005.
doi: 10.3969/j.issn.1000-369X.2018.03.005 |
CHEN L, LIN Q X, ZHANG Y G, CHEN J, WANG L L, YU W Q, YOU Z M. Aroma profiling of tieguanyin oolong tea with different flavor characteristics based on chemical pattern recognition. Journal of Tea Science, 2018, 38(3):253-262. doi: 10.3969/j.issn.1000-369X.2018.03.005. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2018.03.005 |
|
[4] | 宛晓春. 茶叶生物化学. 3版. 北京: 中国农业出版社, 2003. |
WAN X C. Tea Biochemistry.3rd edition. Beijing: Chinese Agriculture Press, 2003. (in Chinese) | |
[5] |
沈丹玉, 尹军峰, 许勇泉, 袁海波, 陈素芹. 不同品种鲜叶生化成分对红茶发酵效果的影响. 安徽农业科学, 2009, 35(19):9120-9125. doi: 10.3969/j.issn.0517-6611.2009.19.128.
doi: 10.3969/j.issn.0517-6611.2009.19.128 |
SHEN D Y, YIN J F, XU Y Q, YUAN H B, CHEN S Q. Influences of biochemical components in the fresh leaf from different tea cultivars on the ferment effect of black tea. Journal of Anhui Agricultural Sciences, 2009, 35(19):9120-9125. doi: 10.3969/j.issn.0517-6611.2009.19.128. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2009.19.128 |
|
[6] |
李敏, 王洁, 杨志伟, 林鹏, 林益明. 不同品种茶叶单宁的含量与结构测定. 食品科学, 2009, 30(2):149-153. doi: 10.3321/j.issn:1002-6630.2009.02.031.
doi: 10.3321/j.issn:1002-6630.2009.02.031 |
LI M, WANG J, YANG Z W, LIN P, LIN Y M. Contents and structure analysis of tannins in leaves of three cultivars of Camellia sinensis. Food Science, 2009, 30(2):149-153. doi: 10.3321/j.issn:1002-6630.2009.02.031. (in Chinese)
doi: 10.3321/j.issn:1002-6630.2009.02.031 |
|
[7] |
郭丽, 吕海鹏, 陈明杰, 张悦, 把熠晨, 郭雅玲, 林智. 福建乌龙茶脂肪酸含量及差异性分析. 茶叶科学, 2019, 39(5):611-618. doi: 10.3969/j.issn.1000-369X.2019.05.015.
doi: 10.3969/j.issn.1000-369X.2019.05.015 |
GUO L, LÜ H P, CHEN M J, ZHANG Y, BA Y C, GUO Y L, LIN Z. Analysis of fatty acid compositions and contents in oolong tea from Fujian Province. Journal of Tea Science, 2019, 39(5):611-618. doi: 10.3969/j.issn.1000-369X.2019.05.015. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2019.05.015 |
|
[8] |
CHEN S, LI M H, ZHENG G Y, WANG T T, LIN J, WANG S S, WANG X X, CHAO Q L, CAO S X, YANG Z B, YU X M. Metabolite profiling of 14 Wuyi Rock Tea cultivars using UPLC-QTOF MS and UPLC-QqQ MS combined with chemometrics. Molecules, 2018, 23(2):104.
doi: 10.3390/molecules23020104 |
[9] |
宋楚君, 范方媛, 龚淑英, 郭昊蔚, 李春霖, 纵榜正. 不同产地红茶的滋味特征及主要贡献物质. 中国农业科学, 2020, 53(2):383-394. doi: 10.3864/j.issn.0578-1752.2020.02.012.
doi: 10.3864/j.issn.0578-1752.2020.02.012 |
SONG C J, FAN F Y, GONG S Y, GUO H W, LI C L, ZONG B Z. Taste characteristic and main contributing compounds of different origin black tea. Scientia Agricultura Sinica, 2020, 53(2):383-394. doi: 10.3864/j.issn.0578-1752.2020.02.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.012 |
|
[10] |
SUN L L, XU H R, YE J H, GAIKWAD N W. Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition (Burbank, Los Angeles County, Calif), 2019, 65:208-215. doi: 10.1016/j.nut.2019.02.006.
doi: 10.1016/j.nut.2019.02.006 |
[11] |
LI J, WANG J Q, YAO Y F, HUA J J, ZHOU Q H, JIANG Y W, DENG Y L, YANG Y Q, WANG J J, YUAN H B, DONG C W. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT-Food Science and Technology, 2020, 117:108595.
doi: 10.1016/j.lwt.2019.108595 |
[12] |
陈宇宏, 黄飞毅, 雷雨, 段继华, 丁玎, 康彦凯, 罗意, 刘盼盼, 李赛君, 龚自明. 黄金茶群体等5个品种(系)制茶品质研究. 茶叶科学, 2019, 39(3):309-317. doi: 10.3969/j.issn.1000-369X.2019.03.009.
doi: 10.3969/j.issn.1000-369X.2019.03.009 |
CHEN Y H, HUANG F Y, LEI Y, DUAN J H, DING D, KANG Y K, LUO Y, LIU P P, LI S J, GONG Z M. Study on the quality of five Huangjincha related cultivars. Journal of Tea Science, 2019, 39(3):309-317. doi: 10.3969/j.issn.1000-369X.2019.03.009. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2019.03.009 |
|
[13] |
殷雨心, 陈玉琼, 焦远方, 郝娟, 余志, 倪德江. 不同茶树品种原料对青砖茶品质的影响. 茶叶科学, 2021, 41(1):48-57. doi: 10.3969/j.issn.1000-369X.2021.01.007.
doi: 10.3969/j.issn.1000-369X.2021.01.007 |
YIN Y X, CHEN Y Q, JIAO Y F, HAO J, YU Z, NI D J. Effects of raw materials from different tea cultivars on green brick tea quality. Journal of Tea Science, 2021, 41(1):48-57. doi: 10.3969/j.issn.1000-369X.2021.01.007. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2021.01.007 |
|
[14] |
王飞权, 冯花, 葛捷琳, 陈荣冰, 刘国英, 张见明. 不同茶树品种新工艺秋季白茶品质比较分析. 茶叶通讯, 2019, 46(4):441-447. doi: 10.3969/j.issn.1009-525X.2019.04.011.
doi: 10.3969/j.issn.1009-525X.2019.04.011 |
WANG F Q, FENG H, GE J L, CHEN R B, LIU G Y, ZHANG J M. Comparative analysis on the quality of autumn white tea with different tea varieties processed by new technique. Tea Communication, 2019, 46(4):441-447. doi: 10.3969/j.issn.1009-525X.2019.04.011. (in Chinese)
doi: 10.3969/j.issn.1009-525X.2019.04.011 |
|
[15] |
陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6):1066-1077. doi: 10.3864/j.issn.0578-1752.2019.06.010.
doi: 10.3864/j.issn.0578-1752.2019.06.010 |
CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia sinensis (L.) O.Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6):1066-1077. doi: 10.3864/j.issn.0578-1752.2019.06.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.06.010 |
|
[16] |
DAI W D, QI D D, YANG T, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, XIE D C, TAN J F, LIN Z. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 2015, 63(44):9869-9878.
doi: 10.1021/acs.jafc.5b03967 |
[17] |
ZHOU P, HU O, FU H Y, OUYANG L Q, GONG X D, MENG P, WANG Z, DAI M, GUO X M, WANG Y. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chemistry, 2019, 283:73-82. doi: 10.1016/j.foodchem.2019.01.050.
doi: 10.1016/j.foodchem.2019.01.050 |
[18] |
TAN J F, DAI W D, LU M L, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, LIN Z. Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Research International, 2016, 79:106-113.
doi: 10.1016/j.foodres.2015.11.018 |
[19] |
CHEN Q C, SHI J, MU B, CHEN Z, DAI W D, LIN Z. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 2020, 332:127412. doi: 10.1016/j.foodchem.2020.127412.
doi: 10.1016/j.foodchem.2020.127412 |
[20] |
DAI W D, LOU N, XIE D C, HU Z Y, SONG H Y, LU M L, SHANG D, WU W L, PENG J K, YIN P Y, LIN Z. N-ethyl-2- pyrrolidinone-substituted flavan-3-ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea. Journal of Agricultural and Food Chemistry, 2020, 68(43):12164-12172. doi: 10.1021/acs.jafc.0c03952.
doi: 10.1021/acs.jafc.0c03952 |
[21] |
CHEN Y J, KUO P C, YANG M L, LI F Y, TZEN J T C. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old GY oolong teas. Food Research International, 2013, 53(2):732-743.
doi: 10.1016/j.foodres.2012.07.007 |
[22] |
YANG C, HU Z Y, LU M L, LI P L, TAN J F, CHEN M, LV H P, ZHU Y, ZHANG Y, GUO L, PENG Q H, DAI W D, LIN Z. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International (Ottawa, Ont), 2018, 106:909-919. doi: 10.1016/j.foodres.2018.01.069.
doi: 10.1016/j.foodres.2018.01.069 |
[23] |
LI P L, DAI W D, LU M L, XIE D C, TAN J F, YANG C, ZHU Y, LV H P, PENG Q H, ZHANG Y, GUO L, NI D J, LIN Z. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. Journal of the Science of Food and Agriculture, 2018, 98(3):1153-1161. doi: 10.1002/jsfa.8566.
doi: 10.1002/jsfa.8566 |
[24] |
DAI W D, XIE D C, LIN Z Y, YANG C, PENG Q H, TAN J F, LIN Z. A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of gamma-aminobutyric acid (GABA) tea. LWT-Food Science and Technology, 2020, 126:109313.
doi: 10.1016/j.lwt.2020.109313 |
[25] |
DAI W D, HU Z Y, XIE D C, TAN J F, LIN Z. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis). Food Chemistry, 2020, 311:126007. doi: 10.1016/j.foodchem.2019.126007.
doi: 10.1016/j.foodchem.2019.126007 |
[26] | 解东超, 戴伟东, 林智. 年份白茶中EPSF类成分研究进展. 中国茶叶, 2019(3):7-10. |
XIE D C, DAI W D, LIN Z. Research progress of EPSF components in aged white tea. China Tea, 2019, 41(3):7-10. (in Chinese) | |
[27] |
GAUR R, KE J P, ZHANG P, YANG Z, BAO G H. Novel cinnamoylated flavoalkaloids identified in tea with acetylcholinesterase inhibition effect. Journal of Agricultural and Food Chemistry, 2020, 68(10):3140-3148. doi: 10.1021/acs.jafc.9b08285.
doi: 10.1021/acs.jafc.9b08285 |
[28] |
ZHANG P, WANG W, LIU X H, YANG Z, GAUR R, WANG J J, KE J P, BAO G H. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF- MS/MS. Food Chemistry, 2021, 339:127864. doi: 10.1016/j.foodchem.2020.127864.
doi: 10.1016/j.foodchem.2020.127864 |
[29] |
XIE D C, DAI W D, LU M L, TAN J F, ZHANG Y, CHEN M, LIN Z. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food Research International (Ottawa, Ont), 2019, 125:108635. doi: 10.1016/j.foodres.2019.108635.
doi: 10.1016/j.foodres.2019.108635 |
[30] | 张英娜. 绿茶茶汤主要儿茶素呈味特性研究[D]. 北京: 中国农业科学院, 2016. |
ZHANG Y N. Study on the taste characteristics of the main catechins in green tea infusion[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[31] |
刘忠英, 杨婷, 戴宇樵, 方仕茂, 刘亚兵, 冉乾松, 李琴, 沈强, 潘科. 基于分子感官科学的茶叶滋味研究进展. 食品工业科技, 2021, 42(4):337-343, 355. doi: 10.13386/j.issn1002-0306.2020040319.
doi: 10.13386/j.issn1002-0306.2020040319 |
LIU Z Y, YANG T, DAI Y Q, FANG S M, LIU Y B, RAN Q S, LI Q, SHEN Q, PAN K. Research progress of tea taste based on molecular sensory science. Science and Technology of Food Industry, 2021, 42(4):337-343, 355. doi: 10.13386/j.issn1002-0306.2020040319. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020040319 |
|
[32] |
KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T. Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural and Food Chemistry, 2006, 54(7):2688-2694.
doi: 10.1021/jf0525232 |
[33] |
高晨曦, 黄艳, 孙威江. 茶叶中原花青素研究进展. 茶叶科学, 2020, 40(4):441-453. doi: 10.3969/j.issn.1000-369X.2020.04.002.
doi: 10.3969/j.issn.1000-369X.2020.04.002 |
GAO C X, HUANG Y, SUN W J. Research progress of proanthocyanidins in tea. Journal of Tea Science, 2020, 40(4):441-453. doi: 10.3969/j.issn.1000-369X.2020.04.002. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2020.04.002 |
|
[34] |
ZHENG X Q, NIE Y, GAO Y, HUANG B, YE J H, LU J L, LIANG Y R. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis. Journal of Food Composition and Analysis, 2018, 67:29-37.
doi: 10.1016/j.jfca.2017.12.016 |
[35] | 吴春燕. 不同茶树品种中黄酮苷含量的测定[D]. 杭州: 浙江大学, 2012. |
WU C Y. Determination of the flavone glycosides in various tea varieties[D]. Hangzhou: Zhejiang University, 2012. (in Chinese) | |
[36] |
SCHARBERT S, HOLZMANN N, HOFMANN T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry, 2004, 52(11):3498-3508. doi: 10.1021/jf049802u.
doi: 10.1021/jf049802u |
[37] |
ZHANG Y, LIU D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 2011, 670(1):325-332. doi: 10.1016/j.ejphar.2011.08.011.
doi: 10.1016/j.ejphar.2011.08.011 |
[38] |
KANG J W, KIM J H, SONG K, KIM S H, YOON J H, KIM K S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytotherapy Research, 2010, 24(Suppl. 1):S77-S82. doi: 10.1002/ptr.2913.
doi: 10.1002/ptr.2913 |
[39] |
CRESPO I, GARCÍA-MEDIAVILLA M V, GUTIÉRREZ B, SÁNCHEZ-CAMPOS S, TUÑÓN M J, GONZÁLEZ-GALLEGO J. A comparison of the effects of kaempferol and quercetin on cytokine- induced pro-inflammatory status of cultured human endothelial cells. The British Journal of Nutrition, 2008, 100(5):968-976. doi: 10.1017/s0007114508966083.
doi: 10.1017/s0007114508966083 |
[40] |
DA-SILVA W S, HARNEY J W, KIM B W, LI J, BIANCO S D, CRESCENZI A, CHRISTOFFOLETE M A, HUANG S A, BIANCO A C. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes, 2007, 56(3):767-776. doi: 10.2337/db06-1488.
doi: 10.2337/db06-1488 |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[4] | 袁平丽,何楠,赵胜杰,路绪强,朱红菊,刁卫楠,龚成胜,MUHAMMAD Jawad Umer,刘文革. 籽瓜、黏籽和普通西瓜的果实代谢组比较[J]. 中国农业科学, 2021, 54(19): 4179-4195. |
[5] | 施江,王佳童,彭群华,吕海鹏,BALDERMANN Susanne,林智. 外源茉莉酸甲酯诱导茶树鲜叶及其采后乌龙茶加工关键工序中七种脂溶性色素变化[J]. 中国农业科学, 2021, 54(18): 3984-3997. |
[6] | 唐思宇,刘秋梅,孟晓慧,马磊,刘东阳,黄启为,沈其荣. 高温和酶解处理水稻秸秆后植物促生物质的鉴定及其效果研究[J]. 中国农业科学, 2021, 54(15): 3250-3263. |
[7] | 虞龙涛,杨何妍,苏宇晨,颜伟玉,吴小波. 基于LC-MS技术研究氟氯苯氰菊酯对西方蜜蜂工蜂幼虫代谢的影响[J]. 中国农业科学, 2021, 54(12): 2689-2698. |
[8] | 赵文华,王桂瑛,荀文,俞媛瑞,葛长荣,廖国周. 基于代谢组学筛选表征茶花鸡肌肉中特征风味的水溶性化合物[J]. 中国农业科学, 2020, 53(8): 1627-1642. |
[9] | 孙永波,王亚,萨仁娜,张宏福. GC-MS分析慢性氨气应激对肉鸡血清代谢物的影响[J]. 中国农业科学, 2020, 53(8): 1688-1698. |
[10] | 戴宇樵,吕才有,何鲁南,易超,刘学艳,黄雯,陈加敏. 基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化[J]. 中国农业科学, 2020, 53(2): 357-370. |
[11] | 张丽翠,马川,冯毛,李建科. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学, 2020, 53(18): 3833-3845. |
[12] | 陈勤操,戴伟东,蔺志远,解东超,吕美玲,林智. 代谢组学解析遮阴对茶叶主要品质成分的影响[J]. 中国农业科学, 2019, 52(6): 1066-1077. |
[13] | 许彦阳,姚桂晓,刘平香,赵洁,王昕璐,孙君茂,钱永忠. 代谢组学在农产品营养品质检测分析中的应用[J]. 中国农业科学, 2019, 52(18): 3163-3176. |
[14] | 李帅岚,沈校,邹峥嵘. 加拿大一枝黄花石油醚萃取物对福寿螺肝脏的影响[J]. 中国农业科学, 2019, 52(15): 2624-2635. |
[15] | 李亚娟,王东升,张世栋,严作廷,杨志强,杜玉兰,董书伟,何宝祥. 基于GC-MS技术的蹄叶炎奶牛血浆代谢谱分析[J]. 中国农业科学, 2016, 49(21): 4255-4264. |
|