中国农业科学 ›› 2020, Vol. 53 ›› Issue (11): 2241-2252.doi: 10.3864/j.issn.0578-1752.2020.11.010
收稿日期:
2019-08-26
接受日期:
2019-09-24
出版日期:
2020-06-01
发布日期:
2020-06-09
通讯作者:
蔡焕杰
作者简介:
朱艳,E-mail: zhuyan2015@nwsuaf.edu.cn。
基金资助:
ZHU Yan,CAI HuanJie(),SONG LiBing,SHANG ZiHui,CHEN Hui
Received:
2019-08-26
Accepted:
2019-09-24
Online:
2020-06-01
Published:
2020-06-09
Contact:
HuanJie CAI
摘要:
【目的】研究不同灌水水平和滴头埋深条件下加气灌溉对温室番茄产量、灌溉水分利用效率(IWUE)和果实品质的影响,进而对不同试验处理进行综合评价。【方法】试验以常规地下滴灌(S)为对照,设置在W1、W2和W3(对应作物-皿系数kcp分别为0.6、0.8和1.0)3个灌水水平与D1和D2(分别对应15 cm和25 cm)2种滴头埋深下进行加气灌溉(O),共12个处理。基于各处理下果实产量和品质指标的差异,通过主成分分析法探索较优的试验处理。【结果】加气灌溉下单株产量、单果重、IWUE、果实中番茄红素、Vc、可溶性糖含量和糖酸比较对照分别显著增加了21.2%、23.9%、21.0%、28.1%、36.0%、22.8%和28.0%(P<0.05)。主成分分析中,第1主成分主要受番茄红素、Vc、灌溉水分利用效率和糖酸比的正影响,且处理W2D1O和W2D2O的得分分列第1和2名。因此处理W2D1O和W2D2O在兼顾节水和番茄果实营养品质方面较优。第2主成分主要受单株产量的正影响和有机酸的负影响,各处理有机酸含量未形成显著性差异且处理W3D1O的单株产量最高,因此得分最高。处理W3D1O的综合得分在12个处理中位列第1位。【结论】灌水水平kcp为1.0,滴头埋深15 cm的加气灌溉处理可兼顾节水和温室番茄高产、优质的要求,为加气灌溉的实际应用提供理论依据。
朱艳,蔡焕杰,宋利兵,商子惠,陈慧. 基于温室番茄产量和果实品质对加气灌溉处理的综合评价[J]. 中国农业科学, 2020, 53(11): 2241-2252.
ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato[J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
表1
蒸发量、灌水时间和灌水量"
移植后天数 Days after transplanting (d) | 2次灌水期间蒸发量 Evaporation between 2 irrigations (mm) | 灌水量Irrigation water volume (mm) | 移植后天数 Days after transplanting (d) | 2次灌水期间蒸发量 Evaporation between 2 irrigations (mm) | 灌水量Irrigation water volume (mm) | |||||
---|---|---|---|---|---|---|---|---|---|---|
W1O (W1S) | W2O (W2S) | W3O (W3S) | W1O (W1S) | W2O (W2S) | W3O (W3S) | |||||
13 | 12.5 | 7.5 | 10.0 | 12.5 | 81 | 3.8 | 2.3 | 3.0 | 3.8 | |
17 | 17.8 | 10.7 | 14.2 | 17.8 | 88 | 5.5 | 3.3 | 4.4 | 5.5 | |
24 | 19.4 | 11.6 | 15.5 | 19.4 | 91 | 3.3 | 2.0 | 2.6 | 3.3 | |
28 | 11.2 | 6.7 | 9.0 | 11.2 | 94 | 1.5 | 0.9 | 1.2 | 1.5 | |
32 | 6.8 | 4.1 | 5.4 | 6.8 | 98 | 2.4 | 1.4 | 1.9 | 2.4 | |
39 | 9.3 | 5.6 | 7.4 | 9.3 | 101 | 1.7 | 1.0 | 1.4 | 1.7 | |
42 | 2.6 | 1.6 | 2.1 | 2.6 | 108 | 5.7 | 3.4 | 4.6 | 5.7 | |
46 | 7.2 | 4.3 | 5.8 | 7.2 | 113 | 5.5 | 3.3 | 4.4 | 5.5 | |
49 | 5.8 | 3.5 | 4.6 | 5.8 | 120 | 5.2 | 3.1 | 4.2 | 5.2 | |
52 | 1.3 | 0.8 | 1.0 | 1.3 | 123 | 2.6 | 1.6 | 2.1 | 2.6 | |
55 | 1.5 | 0.9 | 1.2 | 1.5 | 127 | 2.0 | 1.2 | 1.6 | 2.0 | |
63 | 6.2 | 3.7 | 5.0 | 6.2 | 130 | 2.4 | 1.4 | 1.9 | 2.4 | |
70 | 3.7 | 2.2 | 3.0 | 3.7 | 133 | 2.1 | 1.3 | 1.7 | 2.1 | |
74 | 1.9 | 1.1 | 1.5 | 1.9 | 141 | 4.8 | 2.9 | 3.8 | 4.8 | |
78 | 3.7 | 2.2 | 3.0 | 3.7 | 总计 Total | 159.8 | 95.9 | 127.8 | 159.8 |
表2
不同滴头埋深和灌水水平下加气灌溉对温室番茄产量指标的影响"
产量指标 Yield factors | 处理 Treatment | W1 | W2 | W3 | D1 | D2 | 平均值 Mean value | F值F-value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | W | D | |||||||||||||||
单株产量 Fruit yield per plant (g) | O | 696.7±22.8 | 820.4±33.2 | 924.5±34.6 | 818.0±28.7 | 809.8±26.4 | 813.9±19.4B | 46.41** | 22.03** | 0.338 | |||||||
S | 530.2±17.0 | 685.2±33.0 | 707.8±24.5 | 653.0±24.7 | 629.1±21.4 | 641.1±16.3A | |||||||||||
平均值 Mean value | 613.5±16.8a | 752.8±24.4b | 816.2±24.2c | 735.5±20.2A | 719.5±18.8A | ||||||||||||
单株果数 Fruit number per plant | O | 7.90±0.34 | 8.02±0.31 | 8.40±0.30 | 8.05±0.26 | 8.17±0.26 | 8.11±0.18A | 1.656 | 1.107 | 0.026 | |||||||
S | 8.29±0.39 | 8.38±0.39 | 8.81±0.43 | 8.51±0.31 | 8.48±0.35 | 8.49±0.23A | |||||||||||
平均值 Mean value | 8.10±0.26a | 8.20±0.25a | 8.61±0.26a | 8.28±0.20A | 8.33±0.22A | ||||||||||||
单果重 Fruit weight (g) | O | 91.9±2.91 | 103.1±2.18 | 110.7±1.78 | 102.9±2.17 | 100.9±2.10 | 101.9±1.51B | 157.32** | 21.20** | 0.285 | |||||||
S | 67.2±2.11 | 82.1±1.28 | 83.5±1.86 | 77.9±1.55 | 77.3±1.89 | 77.6±1.22A | |||||||||||
平均值 Mean value | 79.5±2.24a | 92.6±1.70b | 97.1±1.97b | 90.4±1.74A | 89.1±1.76A | ||||||||||||
IWUE (g·mm-1) | O | 52.0±1.70 | 45.9±1.86 | 41.4±1.55 | 46.4±1.43 | 46.5±1.56 | 46.5±1.05B | 52.05** | 14.02** | 0.148 | |||||||
S | 39.6±1.27 | 38.4±1.27 | 31.7±1.10 | 37.2±1.29 | 35.9±1.20 | 36.6±0.88A | |||||||||||
平均值 Mean value | 45.8±1.26c | 42.2±1.37b | 36.6±1.08a | 41.8±1.04A | 41.2±1.09A |
表3
不同滴头埋深和灌水水平下加气灌溉对番茄品质指标的影响"
品质指标 Quality factors | 处理 Treatment | W1 | W2 | W3 | D1 | D2 | 平均值 Mean value | F值F-value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | W | D | |||||||||||||||
番茄红素Lycopene (μg·g-1) | O | 29.2±2.55 | 33.8 ±3.02 | 27.0 ±2.93 | 30.3 ±1.66 | 29.7 ±2.35 | 30.0 ±12.2B | 18.96** | 2.86 | 0.412 | |||||||
S | 22.8±1.91 | 23.6 ±1.92 | 18.4 ±1.05 | 22.7 ±1.13 | 20.5 ±1.65 | 21.6 ±7.35A | |||||||||||
平均值 Mean value | 26.0±1.66ab | 28.7 ±1.96b | 22.7 ±1.70a | 26.5 ±1.40A | 25.1 ±1.56A | ||||||||||||
Vc (mg·100g-1) | O | 2.77±0.35 | 3.40±0.33 | 2.48±0.23 | 2.97±0.22 | 2.80±0.29 | 2.88±1.34B | 19.70** | 2.75 | 0.402 | |||||||
S | 1.94±0.26 | 2.06±0.25 | 1.56±0.24 | 1.93±0.18 | 1.77±0.23 | 1.85±1.06A | |||||||||||
平均值 Mean value | 2.36±0.23ab | 2.73±0.23b | 2.02±0.18a | 2.45±0.16A | 2.29±0.20A | ||||||||||||
可溶性糖 Soluble sugar (%) | O | 3.10±0.30 | 2.68±0.42 | 2.28±0.22 | 2.77±0.24 | 2.60±0.30 | 2.68±1.39B | 6.85* | 3.17* | 0.095 | |||||||
S | 2.36±0.14 | 2.12±0.36 | 1.74±0.11 | 2.07±0.19 | 2.08±0.20 | 2.07±1.00A | |||||||||||
平均值 Mean value | 2.73±0.17b | 2.40±0.28ab | 2.01±0.13a | 2.42±0.16A | 2.34±0.18A | ||||||||||||
有机酸 Titrable acid (%) | O | 0.62±0.03 | 0.57±0.05 | 0.54±0.05 | 0.58±0.04 | 0.57±0.03 | 0.58±0.19A | 2.22 | 2.86 | 0.104 | |||||||
S | 0.73±0.06 | 0.61±0.06 | 0.58±0.04 | 0.65±0.05 | 0.63±0.04 | 0.64±0.25A | |||||||||||
平均值 Mean value | 0.68±0.04b | 0.59±0.04ab | 0.56±0.03a | 0.61±0.03A | 0.60±0.03A | ||||||||||||
糖酸比 Sugar-acid ratio | O | 5.00±0.41 | 4.55±0.49 | 4.90±0.70 | 5.23±0.51 | 4.40±0.34 | 4.81±2.28B | 13.43** | 0.246 | 1.51 | |||||||
S | 3.65±0.34 | 3.44±0.44 | 3.25±0.30 | 3.52±0.32 | 3.38±0.26 | 3.45±1.51A | |||||||||||
平均值 Mean value | 4.32±0.29a | 4.00±0.34a | 4.08±0.40a | 4.37±0.32A | 3.89±0.23A |
表4
不同试验处理对温室番茄产量指标和品质指标的影响"
处理 Treatment | 单株产量 Fruit yield per (g/plant) | 单株果数 Fruit number per plant | 单果重 Fruit weight (g) | IWUE (g·mm-1) | 番茄红素 Lycopene (μg·g-1) | Vc (mg·100 g-1) | 可溶性糖 Soluble sugar (%) | 有机酸 Titrable acid (%) | 糖酸比 Sugar-acid ratio |
---|---|---|---|---|---|---|---|---|---|
W1D1O | 666.0±30.03b | 7.76±0.511a | 89.8±4.03cd | 6.94±0.313fg | 30.1±4.33cd | 2.84±0.42cd | 3.16±0.34c | 0.65±0.06a | 5.00±0.53bc |
W1D1S | 537.8±17.56a | 8.19±0.429a | 67.3±1.91a | 5.61±0.183cd | 23.3±1.85abc | 2.01±0.30abc | 2.24±0.10abc | 0.73±0.10a | 3.60±0.52ab |
W1D2O | 727.5±33.79bcd | 8.05±0.460a | 93.9±4.26d | 7.59±0.352g | 28.3±2.95bcd | 2.70±0.59bcd | 3.04±0.50c | 0.60±0.04a | 4.99±0.65bc |
W1D2S | 522.6±29.48a | 8.38±0.664a | 67.0±3.83a | 5.45±0.307cd | 22.3±3.47abc | 1.87±0.45abc | 2.48±0.27abc | 0.73±0.08a | 3.70±0.48ab |
W2D1O | 837.5±52.73de | 8.10±0.462a | 103.9±3.20e | 6.55±0.413ef | 33.1±3.52d | 3.45±0.48d | 2.85±0.53bc | 0.57±0.09a | 5.07±0.64bc |
W2D1S | 692.6±56.12bc | 8.62±0.667a | 81.2±2.40b | 5.42±0.439bcd | 25.3±2.32abcd | 2.15±0.35abc | 2.09±0.55abc | 0.62-±0.10a | 3.36±0.71ab |
W2D2O | 803.2±41.39cde | 7.95±0.428a | 102.4±3.03e | 6.29±0.324def | 34.6±5.12d | 3.34±0.49d | 2.50±0.69abc | 0.57-±0.05a | 4.04±0.75abc |
W2D2S | 677.7±36.02b | 8.14±0.416a | 83.1±0.92bc | 5.30±0.212bc | 21.8±3.07abc | 1.98±0.37abc | 2.16±0.49abc | 0.60-±0.09a | 3.52±0.55ab |
W3D1O | 950.5±44.11f | 8.29±0.403a | 115.0±1.24f | 5.95±0.28cde | 27.6±4.70bcd | 2.60±0.16abcd | 2.29±0.32abc | 0.53±0.08a | 5.62±1.35c |
W3D1S | 728.5±34.19bcd | 8.71±0.508a | 85.2±2.07bc | 4.56±0.214ab | 19.3±1.13ab | 1.64±0.30ab | 1.87±0.14ab | 0.59±0.07a | 3.59±0.50ab |
W3D2O | 898.6±53.79ef | 8.52±0.461a | 106.4±3.09e | 5.62±0.337cd | 26.3±3.78abcd | 2.36±0.43abcd | 2.27±0.33abc | 0.54±0.06a | 4.18±0.32abc |
W3D2S | 687.1±35.30b | 8.90±0.707a | 81.7±3.10bc | 4.30±0.221a | 17.5±1.80a | 1.48±0.38a | 1.60±0.17a | 0.57±0.05a | 2.92±0.31a |
表5
各产量指标与品质指标间的相关性"
指标 Index | 单株产量 Fruit yield per plant | 单株果数 Fruit number per plant | 单果重 Fruit weight | IWUE | 番茄红素 Lycopene | Vc | 可溶性糖 Soluble sugar | 有机酸 Titrable acid | 糖酸比 Sugar-acid ratio |
---|---|---|---|---|---|---|---|---|---|
单株产量Fruit yield per plant | 1 | -0.008 | 0.970** | 0.193 | 0.459 | 0.502 | 0.059 | -0.910** | 0.565 |
单株果数Fruit number per plant | 1 | -0.228 | -0.834** | -0.751** | -0.740** | -0.860** | -0.184 | -0.622* | |
单果重Fruit weight | 1 | 0.394 | 0.620* | 0.660* | 0.272 | -0.851** | 0.703* | ||
IWUE | 1 | 0.803** | 0.795** | 0.937** | -0.004 | 0.776** | |||
番茄红素Lycopene | 1 | 0.986** | 0.757** | -0.233 | 0.695* | ||||
Vc | 1 | 0.754** | -0.304 | 0.724** | |||||
可溶性糖Soluble sugar | 1 | 0.146 | 0.742** | ||||||
有机酸Titrable acid | 1 | -0.311 | |||||||
糖酸比Sugar-acid ratio | 1 |
表6
主成分特征值及方差贡献率"
主成分 Principal component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | 累计方差贡献率 Cumulative variance contribution rate (%) |
---|---|---|---|
1 | 5.582 | 62.02 | 62.02 |
2 | 2.6 | 28.89 | 90.91 |
3 | 0.419 | 4.65 | 95.56 |
4 | 0.159 | 1.77 | 97.32 |
5 | 0.151 | 1.68 | 99.00 |
6 | 0.051 | 0.57 | 99.57 |
7 | 0.031 | 0.34 | 99.91 |
8 | 0.006 | 0.06 | 99.97 |
9 | 0.002 | 0.03 | 100.00 |
表7
因子负荷矩阵"
指标 Index | 主成分 Principal components | |
---|---|---|
1 | 2 | |
单株产量Fruit yield per plant (g) | 0.587 | 0.801 |
单株果数Fruit number per plant | -0.76 | 0.547 |
单果重Fruit weight (g) | 0.752 | 0.652 |
IWUE (g·mm-1) | 0.871 | -0.39 |
番茄红素Lycopene (μg·g-1) | 0.929 | -0.102 |
Vc (mg·100 g-1) | 0.944 | -0.05 |
可溶性糖Soluble sugar (%) | 0.813 | -0.52 |
有机酸Titrable acid (%) | -0.37 | -0.893 |
糖酸比Sugar-acid ratio | 0.885 | 0.033 |
表8
基于温室番茄产量和果实品质的各处理的综合得分"
处理 Treatment | 主因子1 Main factor 1 Z1 | 主因子2 Main factor 2 Z2 | 综合得分 Comprehensive score Z | 综合排名 Comprehensive ranking |
---|---|---|---|---|
W1D1O | 0.979 | -1.261 | 0.243 | 6 |
W1D1S | -0.789 | -1.421 | -0.900 | 11 |
W1D2O | 0.976 | -0.596 | 0.433 | 5 |
W1D2S | -0.871 | -1.403 | -0.945 | 12 |
W2D1O | 1.329 | 0.176 | 0.875 | 2 |
W2D1S | -0.618 | 0.098 | -0.355 | 8 |
W2D2O | 0.987 | 0.134 | 0.651 | 3 |
W2D2S | -0.520 | -0.101 | -0.352 | 7 |
W3D1O | 0.888 | 1.362 | 0.944 | 1 |
W3D1S | -1.055 | 0.751 | -0.437 | 9 |
W3D2O | 0.230 | 1.229 | 0.498 | 4 |
W3D2S | -1.536 | 1.032 | -0.655 | 10 |
[1] |
CAMP C R . Subsurface drip irrigation: A review. Transactions of the ASAE, 1998,41:1353.
doi: 10.13031/2013.17309 |
[2] | CAMP C R, LAMM F R, EVANS R G, PHENE C J . Subsurface drip irrigation-past, present, and future. National Irrigation Symposium Decennial Symposium. 2000. |
[3] | 黄兴法, 李光永 . 地下滴灌技术的研究现状与发展. 农业工程学报, 2002,18(2):176-181. |
HANG X F, LI G Y . Present situation and development of subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2002,18(2):176-181. (in Chinese) | |
[4] |
BHATTARAI S P, MIDMORE D J, PENDERGAST L . Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrigation Science, 2008,26(5):439-450.
doi: 10.1007/s00271-008-0112-5 |
[5] | KLEPPER B . Crop root system response to irrigation. Irrigation Science, 1991,12(3):105-108. |
[6] |
HANS-PETER KLäRING, ZUDE M . Sensing of tomato plant response to hypoxia in the root environment. Scientia Horticulturae, 2009,122(1):17-25.
doi: 10.1016/j.scienta.2009.03.029 |
[7] |
MACHADO R M A, MARIA D R, OLIVEIRA G, Portas, C A M . Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant and Soil, 2003,255(1):333-341.
doi: 10.1023/A:1026191326168 |
[8] | BHATTARAI S P, SU N, MIDMORE D J . Oxygation unlocks yield potentials of crops in oxygen-limited soil environments. Advances in Agronomy, 2005,88:313-377. |
[9] | BHATTARAI S P, PENDERGAST L, MIDMORE D J . Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils. Scientia Horticulturae, 2006,108(3):278-288. |
[10] | 朱艳, 蔡焕杰, 宋利兵, 陈慧 . 加气灌溉对番茄植株生长、产量和果实品质的影响. 农业机械学报, 2017,48(8):199-210. |
ZHU Y, CAI H J, SONG L B, CHEN H . Impacts of oxygation on plant growth, yield and fruit quality of tomato. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(8):199-210. (in Chinese). | |
[11] | 卢泽华, 蔡焕杰, 王健, 李志军 . 不同生育时期根际加气对温室番茄生长及产量的影响. 中国农业科学, 2012,45(7):1330-1337. |
LU Z H, CAI H J, WANG J, LI Z J . Effects of rhizosphere ventilation at different growth stages on plant growth and yield of greenhouse tomato. Scientia Agricultura Sinica, 2012,45(7):1330-1337. doi: 10.3864/j.issn.0578-1752.2012.07.010. (in Chinese) | |
[12] |
BEN-NOAH I, FRIEDMAN S P . Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agricultural Water Management, 2016,176(6):222-233.
doi: 10.1016/j.agwat.2016.06.015 |
[13] |
BEN-NOAH I, FRIEDMAN S P . Oxygation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments. Rhizosphere, 2016,2:1-11.
doi: 10.1016/j.rhisph.2016.10.001 |
[14] | ZHU Y, CAI H J, SONG L B, CHEN H. Oxygation improving soil aeration around tomato root zone in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 163-172. Doi: 10.11975/j.issn.1002-6819.2017.21.019 http://www.tcsae.org.(in Chinese) |
[15] | LI Y, NIU W Q, WANG J W, LIU L, ZHANG M Z, XU J . Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Science Society of America Journal, 2016,80(5):1208-1221. |
[16] |
CHEN H, HOU H J, WANG X Y, ZHU Y, QAISAR S, WANG Y F, CAI H J . The effects of aeration and irrigation regimes on soil CO2, and N2O emissions in a greenhouse tomato production system. Journal of Integrative Agriculture, 2018,17(2):449-460.
doi: 10.1016/S2095-3119(17)61761-1 |
[17] |
CHEN H, HOU H J, HU H W, SHANG Z H, ZHU Y, CAI H J, QAISAR S . Aeration of different irrigation levels affects net global warming potential and carbon footprint for greenhouse tomato systems. Scientia Horticulturae, 2018,242:10-19.
doi: 10.1016/j.scienta.2018.07.021 |
[18] | 陈慧, 李亮, 蔡焕杰, 朱艳, 王云霏, 徐家屯 . 加气条件下土壤N2O排放对硝化/反硝化细菌数量的响应. 农业机械学报, 2018,49(4):303-311. |
CHEN H, LI L, CAI H J, ZHU Y, WANG Y F, XU J T . Response of soil N2O fluxes to soil nitrifying and denitrifying bacteria under aerated irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(4):303-311. (in Chinese) | |
[19] | 李元, 牛文全, 吕望, 古君, 邹小阳, 王京伟, 刘璐, 张明智, 许健 . 加气灌溉改善大棚番茄光合特性及干物质积累. 农业工程学报, 2016,32(18):125-132. |
LI Y, NIU W Q, LÜ W, GU J, ZOU X Y, WANG J W, LIU L, ZHANG M Z, XU J . Aerated irrigation improving photosynthesis characteristics and dry matter accumulation of greenhouse tomato. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(18):125-132. Doi: 10.11975/j.issn.1002-6819.2016.18.017. (in Chinese) | |
[20] | 谢恒星, 蔡焕杰, 张振华 . 温室甜瓜加氧灌溉综合效益评价. 农业机械学报, 2010,41(11):79-83. |
XIE H X, CAI H J, ZHANG Z H . Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation. Transactions of the Chinese Society for Agricultural Machinery, , 2010, 41(11):79-83. (in Chinese) | |
[21] |
CHEN X, DHUNGEL J, BHATTARAI S P, TORABI M, PENDERGAST L, MIDMORE D J . Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. Journal of Plant Ecology, 2011,4(4):236-248.
doi: 10.1093/jpe/rtq030 |
[22] | 雷宏军, 胡世国, 潘红卫, 臧明, 刘鑫, 李轲 . 土壤通气性与加氧灌溉研究进展. 土壤学报, 2017,54(2):297-308. |
LEI H J, HU S G, PAN H W, ZANG M, LIU X, LI K . Advancement in research on soil aeration and oxygation. Acta Pedologica Sinica, 2017,54(2):297-308. (in Chinese) | |
[23] | 杜娅丹, 张倩, 崔冰晶, 谷晓博, 牛文全 . 加气灌溉水氮互作对温室芹菜地N2O排放的影响. 农业工程学报, 2017, 33(16): 127-134. |
DU Y D, ZHANG Q, CUI B J, GU X B, NIU W Q. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 127-134. Doi: 10.11975/j.issn.1002-6819.2017.16.017 http://www.tcsae.org.(in Chinese) | |
[24] | BHATTARAI S P, MIDMORE D J, SU N . Sustainable Irrigation to Balance Supply of Soil Water, Oxygen, Nutrients and Agro-chemicals. Netherlands: Springer, 2010: 253-286. |
[25] |
LI Y, NIU W, DYCK M, WANG J W, ZOU X Y . Yields and nutritional of greenhouse tomato in response to different soil aeration volume at two depths of subsurface drip irrigation. Scientific Reports, 2016,6(1):39307.
doi: 10.1038/srep39307 |
[26] | 李元, 牛文全, 许健, 张若婵, 王京伟, 张明智 . 加气滴灌提高大棚甜瓜品质及灌溉水分利用效率. 农业工程学报, 2016,32(1):147-154. |
LI Y, NIU W Q, XU J, ZHANG R C, WANG J W, ZHANG M Z . Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(1):147-154. Doi: 10.11975/j.issn.1002-6819.2016.01.020. (in Chinese) | |
[27] | 康跃虎 . 实用型滴灌灌溉计划制定方法. 节水灌溉, 2004(3):11-12. |
KANG Y H . Applied method for drip irrigation scheduling. Water Saving Irrigation, 2004(3):11-12. (in Chinese) | |
[28] | ERTEK A, SENSOY S, GEDIK I, KUCUKYUMUK C . Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agricultural Water Management, 2006,81(1/2):170-172. |
[29] | 赵伟霞, 蔡焕杰, 单志杰, 陈新明, 王健 . 无压灌溉日光温室番茄高产指标. 农业工程学报, 2009,25(3):16-21. |
ZHAO W X, CAI H J, SHAN Z J, CHEN X M, WANG J . High yield indicators of greenhouse tomato under non-pressure irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):16-21. (in Chinese) | |
[30] | 朱艳, 蔡焕杰, 宋利兵, 侯会静, 陈慧 . 加气灌溉下气候因子和土壤参数对土壤呼吸的影响. 农业机械学报, 2016,47(12):223-232. |
ZHU Y, CAI H J, SONG L B, HOU H J, CHEN H . Effects of climatic factors and soil parameters on soil respiration under oxygation conditions. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(12):223-232. (in Chinese) | |
[31] | 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006. |
GAO J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. ( in Chinese) | |
[32] | 刘明池, 张慎好, 刘向莉 . 亏缺灌溉时期对番茄果实品质和产量的影响. 农业工程学报, 2005,21(增刊):92-95. |
LIU M C, ZHANG S H, LIU X L . Effects of different deficit irrigation periods on yield and fruit quality of tomato. Transactions of the Chinese Society of Agricultural Engineering, 2005,21(Suppl.):92-95. (in Chinese) | |
[33] | 李毅琳, 胡敏予, 瞿树林, 周光宇, 黄亿明 . 番茄红素简便测定方法的应用与分析. 食品科学, 2007,28(3):268-270. |
LI Y L, HU M Y, QU S L, ZHOU G Y, HUANG Y M . Application and analysis on method of lycopene assay. Food Science, 2007, 28(3):268-270. ( in Chinese) | |
[34] | 胡晓波, 温辉梁, 许全, 刘崇波 . 番茄红素含量测定. 食品科学, 2005,26(9):566-569. |
HU X B, WEN H L, XU Q, LIU C B . Determination of lycopene's concent. Food Science, 2005, 26(9):566-569. ( in Chinese) | |
[35] |
DU Y D, NIU W Q, GU X B, ZHANG Q, CUI B J, ZHAO Y . Crop yield and water use efficiency under aerated irrigation: A meta- analysis. Agricultural Water Management, 2018,210:158-164.
doi: 10.1016/j.agwat.2018.07.038 |
[36] |
CHEN J, KANG S Z, DU T S, QIU R J, GUO P, CHEN R Q . Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 2013,129(11):152-162.
doi: 10.1016/j.agwat.2013.07.011 |
[37] |
TOOR R K, SAVAGE G P, HEEB A . Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, 2006,19(1):20-27.
doi: 10.1016/j.jfca.2005.03.003 |
[38] | FRUSCIANTE L, CARLI P, ERCOLANO M R, PERNICE R, DI M A, FOGLIANO V, PELLEGRINI N . Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 2010,51(5):609-617. |
[39] |
RAO A V, AMANAT A . Biologically active phytochemicals in human health:Lycopene. International Journal of Food Properties, 2007,10(2):279-288.
doi: 10.1080/10942910601052673 |
[40] | 臧明, 雷宏军, 潘红卫, 刘欢, 徐建新 . 增氧地下滴灌改善土壤通气性促进番茄生长. 农业工程学报, 2018,34(23):109-118. |
ZANG M, LEI H J, PAN H W, LIU H, XU J X . Aerated subsurface drip irrigation improving soil aeration and tomato growth. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23):109-118. doi: 10.11975/j.issn.1002-6819.2018.23.013. (in Chinese) | |
[41] |
WOLF B . The fertile triangle: The interrelationship of air, water, and nutrients in maximizing soil productivity. Soil Science, 2000,165(8):677-679.
doi: 10.1097/00010694-200008000-00009 |
[42] | 赵旭, 李天来, 孙周平 . 番茄基质通气栽培模式的效果. 应用生态学报, 2010,21(1):74-78. |
ZHAO X, LI T L, SUN Z P . Effects of substrate-aeration cultivation pattern on tomato growth. Chinese Journal of Applied Ecology, 2010,21(1):74-78. (in Chinese) | |
[43] | 赵丰云, 郁松林, 孙军利, 蒋宇, 刘怀峰, 于坤 . 加气灌溉对温室葡萄生长及不同形态氮素吸收利用影响. 农业机械学报, 2018,49(1):228-234. |
ZHAO F Y, YU S L, SUN J L, JIANG Y, LIU H F, YU K . Effect of rhizosphere aeration on growth and absorption, distribution and utilization of NH4 +-N and NO3 --N of Red Globe grape seedling . Transactions of the Chinese Society for Agricultural Machinery, 2018,49(1):228-234. (in Chinese) | |
[44] |
张钧恒, 马乐乐, 李建明 . 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响. 中国农业科学, 2018,51(14):2788-2798.
doi: 10.3864/j.issn.0578-1752.2018.14.015 |
ZHANG J H, MA L L, LI J M . Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018,51(14):2788-2798. Doi: 10.3864/j.issn.0578-1752.2018.14.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.015 |
|
[45] | 齐红岩, 李天来, 张洁, 王磊, 陈元宏 . 亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响. 中国农业科学, 2004,37(7):1045-1049. |
QI H Y, LI T L, ZHANG J, WANG L, CHEN Y H . Effects of irrigation on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit. Scientia Agricultura Sinica, 2004,37(7):1045-1049. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[8] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[12] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[13] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[14] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[15] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 599
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|