中国农业科学 ›› 2018, Vol. 51 ›› Issue (23): 4424-4433.doi: 10.3864/j.issn.0578-1752.2018.23.003
王倩倩(),贾润语,李虹呈,周航(
),杨文弢,辜娇峰,彭佩钦,廖柏寒(
)
收稿日期:
2018-06-13
接受日期:
2018-08-14
出版日期:
2018-12-01
发布日期:
2018-12-12
基金资助:
WANG QianQian(),JIA RunYu,LI HongCheng,ZHOU Hang(
),YANG WenTao,GU JiaoFeng,PENG PeiQin,LIAO BoHan(
)
Received:
2018-06-13
Accepted:
2018-08-14
Online:
2018-12-01
Published:
2018-12-12
摘要:
【目的】探究水稻不同生育时期Cd胁迫对水稻成熟期糙米Cd累积的影响,明确糙米Cd累积关键生育时期,以期适时采取阻控措施降低糙米Cd含量,为水稻安全生产提供理论参考。【方法】以水稻品种湘晚籼13号(晚稻品种)为研究对象,采用水培试验,共设计7个添加外源Cd处理,即CG(全生育时期Cd胁迫,102 d)、TS(分蘖期Cd胁迫,15 d)、JS(拔节期Cd胁迫,15 d)、BS(孕穗期Cd胁迫,21 d)、FS(灌浆期Cd胁迫,18 d)、DS(腊熟期Cd胁迫,15 d)、MS(成熟期Cd胁迫,18 d),以全生育时期无Cd胁迫作为空白对照(CK),每个处理重复3次。各处理外源Cd胁迫浓度相同,均为20 μg·L -1。水培试验于2017年7月23日开始,在湖南省长沙市中南林业科技大学水稻试验基地进行。2017年11月19日,水稻成熟后,整株采集水稻,测定指标为不同生育时期Cd胁迫下水稻农艺性状(株高、分蘖数和各部位生物量)和水稻各部位(根、茎、叶、穗、谷壳和糙米)Cd含量,计算水稻各部位Cd累积量以及不同生育时期Cd累积对成熟期糙米Cd累积的相对贡献率。【结果】不同生育时期Cd胁迫对水稻株高、分蘖数以及各部位生物量没有显著影响。灌浆期Cd胁迫下,水稻成熟期糙米Cd含量最高,为1.05 mg·kg -1,显著高于水稻成熟期(0.57 mg·kg -1)、孕穗期(0.52 mg·kg -1)、腊熟期(0.38 mg·kg -1)、拔节期(0.31 mg·kg -1)和分蘖期(0.17 mg·kg -1)Cd胁迫下糙米Cd含量。各生育时期Cd胁迫下水稻成熟期糙米Cd累积量范围为0.18—1.56 μg/株,糙米Cd累积量大小顺序为:全生育时期Cd胁迫>灌浆期Cd胁迫>成熟期Cd胁迫>孕穗期Cd胁迫>拔节期Cd胁迫>分蘖期Cd胁迫。孕穗期、灌浆期和成熟期是水稻糙米Cd累积的关键生育时期,对成熟期糙米Cd累积相对贡献率分别为19.7%、39.3%和22.6%,而分蘖期、拔节期和腊熟期的Cd累积对成熟期糙米Cd累积相对贡献较小,贡献率分别为2.4%、4.2%和11.9%。除全生育时期Cd胁迫外,水稻根、茎、穗和谷壳Cd含量均在孕穗期和灌浆期Cd胁迫下较高;各生育时期Cd胁迫下,水稻叶Cd含量无显著性差异。孕穗期和灌浆期Cd胁迫下根Cd累积量较高,分别为86.09 μg/株和79.23 μg/株,显著高于其他生育时期Cd胁迫下根Cd累积量(31.55—40.37 μg/株)。与其他生育时期Cd胁迫相比,水稻植株Cd总累积量在孕穗期和灌浆期Cd胁迫下较高,分别为107.13 μg/株和98.35 μg/株,显著高于其他生育时期Cd胁迫下水稻植株Cd总累积量(42.24—52.47 μg/株)。【结论】水稻的孕穗期、灌浆期和成熟期是控制水稻糙米Cd累积的关键时期。在孕穗期和灌浆期Cd胁迫下,水稻成熟期根和糙米累积Cd最多,因此可以在水稻孕穗期和灌浆期施加改良剂阻隔根系吸收Cd或者阻隔根系吸收的Cd向糙米中转运,从而降低水稻糙米中Cd的累积。
王倩倩,贾润语,李虹呈,周航,杨文弢,辜娇峰,彭佩钦,廖柏寒. Cd胁迫水培试验下水稻糙米Cd累积的关键生育时期[J]. 中国农业科学, 2018, 51(23): 4424-4433.
WANG QianQian,JIA RunYu,LI HongCheng,ZHOU Hang,YANG WenTao,GU JiaoFeng,PENG PeiQin,LIAO BoHan. Key Growth Stage of Cd Accumulation in Brown Rice Through a Hydroponic Experiment with Cd Stress[J]. Scientia Agricultura Sinica, 2018, 51(23): 4424-4433.
表1
试验设计"
处理 Treatment | 胁迫时间 Stress time (d) | 试验处理 Experimental treatment | 胁迫时期 Stress stage |
---|---|---|---|
CK | 0 | 不添加外源Cd,仅在自来水中添加营养液 Adding nutrient solution to tap water without exogenous Cd | 无 No |
TS | 15 | 水稻幼苗移栽后在营养液中添加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至分蘖期结束 Adding exogenous Cd to nutrient solution until to the end of tillering stage after transplanting, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 分蘖期 Tillering stage |
JS | 15 | 水稻分蘖期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至拔节期结束 Adding exogenous Cd to nutrient solution from the end of tillering stage to the end of jointing stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 拔节期 Jointing stage |
BS | 21 | 水稻拔节期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至孕穗期结束 Adding exogenous Cd to nutrient solution from the end of jointing stage to the end of booting stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 孕穗期 Booting stage |
FS | 18 | 水稻孕穗期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至灌浆期结束 Adding exogenous Cd to nutrient solution from the end of booting stage to the end of filling stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 灌浆期 Filling stage |
DS | 15 | 水稻灌浆期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至腊熟期结束 Adding exogenous Cd to nutrient solution from the end of filling stage to the end of dough stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 腊熟期 Dough stage |
MS | 18 | 水稻腊熟期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至成熟期结束 Adding exogenous Cd to nutrient solution from the end of dough stage to the end of maturing stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 成熟期 Maturing stage |
CG | 102 | 水稻幼苗移栽后在营养液中添加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至成熟期结束 Adding exogenous Cd to nutrient solution until to the end of maturing stage after transplanting, and keeping Cd concentration in nutrient solution at 20 μg·L-1 | 全生育时期 Whole growth stages |
表2
不同生育时期Cd胁迫对水稻生长的影响"
处理 Treatment | 株高 Plant height (cm) | 分蘖数 Tiller number | 水稻各部位生物量 Cd contents in rice tissues (g/plant) | ||||||
---|---|---|---|---|---|---|---|---|---|
糙米 Brown rice | 谷壳 Husk | 穗 Ear | 叶 Leaf | 茎 Stem | 根 Root | 总生物量 Total biomass | |||
CK | 105.7±4.7a | 17±1ab | 1.5±0.5a | 7.6±2.2ab | 1.9±1.0a | 14.6±1.2a | 23.2±2.6ab | 8.0±0.4a | 56.8±3.8a |
CG | 106.7±4.7a | 15±1b | 1.6±0.1a | 8.4±2.1ab | 2.4±0.2a | 17.2±2.4a | 15.9±2.5b | 7.0±0.5a | 52.4±2.8a |
TS | 105.0±4.1a | 15±1b | 1.1±0.1a | 5.5±0.8ab | 2.4±0.2a | 17.6±4.4a | 18.6±4.1ab | 7.0±1.3a | 52.2±6.7a |
JS | 101.7±2.4a | 22±1a | 0.9±0.5a | 4.1±1.8b | 2.9±0.9a | 14.8±5.0a | 19.8±4.7ab | 8.3±2.0a | 50.8±14.0a |
BS | 103.3±9.4a | 17±1ab | 1.4±0.4a | 6.2±4.2ab | 2.3±0.4a | 15.6±1.2a | 20.4±4.8ab | 6.7±0.7a | 52.7±10.9a |
FS | 106.7±2.4a | 17±1ab | 1.3±0.6a | 4.0±1.4b | 2.5±0.1a | 14.7±1.3a | 19.7±2.6ab | 6.5±1.3a | 48.7±3.0a |
DS | 105.0±4.1a | 19±2ab | 1.3±0.2a | 9.9±2.0ab | 3.0±0.3a | 14.5±3.5a | 18.8±4.9ab | 7.6±1.7a | 55.1±6.5a |
MS | 105.0±4.1a | 18±2ab | 1.5±0.0a | 11.3±5.6a | 2.8±0.5a | 16.0±1.5a | 26.1±2.7a | 7.8±0.3a | 65.4±8.1a |
表3
不同生育时期Cd胁迫对水稻成熟期根、茎、叶、穗和谷壳Cd含量的影响"
处理 Treatment | 谷壳 Husk | 穗 Ear | 叶 Leaf | 茎 Stem | 根 Root |
---|---|---|---|---|---|
CK | 0.10±0.03c | 0.05±0.01b | 0.02±0.01b | 0.07±0.03b | 1.60±0.09c |
CG | 1.04±0.34a | 0.74±0.29a | 0.99±0.07a | 3.00±1.78a | 22.32±4.99a |
TS | 0.31±0.05bc | 0.27±0.08b | 0.12±0.02b | 0.23±0.04b | 5.72±1.53c |
JS | 0.45±0.09bc | 0.22±0.10b | 0.08±0.02b | 0.45±0.15b | 5.02±0.78c |
BS | 0.71±0.18ab | 0.52±0.18ab | 0.11±0.05b | 0.72±0.27b | 12.89±0.97b |
FS | 0.96±0.23a | 0.37±0.18ab | 0.07±0.02b | 0.60±0.27b | 12.51±1.64b |
DS | 0.27±0.07c | 0.36±0.14ab | 0.08±0.02b | 0.25±0.07b | 4.53±0.94c |
MS | 0.27±0.06c | 0.13±0.10b | 0.08±0.03b | 0.21±0.17b | 4.09±2.05c |
表4
不同生育时期Cd胁迫对水稻成熟期各部位(根、茎、叶、穗、谷壳和糙米)Cd累积量的影响"
处理 Treatment | 糙米 Brown rice | 谷壳 Husk | 穗 Ear | 叶 Leaf | 茎 Stem | 根 Root | 植株 Rice plant |
---|---|---|---|---|---|---|---|
CK | 0.11±0.02d | 0.66±0.11b | 0.10±0.05c | 0.24±0.01b | 1.64±0.60b | 12.71±1.44c | 15.45±2.12c |
CG | 1.56±0.24a | 8.85±3.48a | 1.76±0.33a | 17.16±3.81a | 43.02±20.56a | 155.87±34.41a | 228.21±55.88a |
TS | 0.18±0.03cd | 1.72±0.29b | 0.63±0.12bc | 2.25±0.81b | 4.20±0.71b | 38.10±4.23c | 47.08±3.38c |
JS | 0.24±0.03cd | 1.92±1.20b | 0.66±0.33bc | 1.02±0.36b | 8.25±1.83b | 40.37±5.27c | 52.47±6.81c |
BS | 0.75±0.28c | 4.06±2.16b | 1.14±0.23ab | 1.69±0.65b | 13.42±2.20b | 86.09±2.36b | 107.13±3.11b |
FS | 1.39±0.69ab | 3.74±1.08b | 0.90±0.43bc | 0.98±0.30b | 12.11±6.58b | 79.23±5.21b | 98.35±6.22b |
DS | 0.49±0.19cd | 2.57±0.48b | 1.06±0.36ab | 1.17±0.53b | 4.61±1.76b | 32.77±1.23c | 42.68±2.10c |
MS | 0.84±0.04bc | 3.33±2.26b | 0.32±0.17bc | 1.22±0.40b | 4.97±3.65b | 31.55±15.30c | 42.24±18.08c |
[1] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014,36(5):10-11.
doi: 10.11654/jaes.2017-1220 |
Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of the national soil pollution survey.China's Environmental Protection Industry, 2014, 36(5):10-11. (in Chinese)
doi: 10.11654/jaes.2017-1220 |
|
[2] |
杨文弢, 周航, 邓贵友, 朱维, 吴玉俊, 邹紫今, 王艳, 廖柏寒 . 组配改良剂对污染稻田中铅、镉和砷生物有效性的影响. 环境科学学报, 2016,36(1):257-263.
doi: 10.13671/j.hjkxxb.2015.0133 |
YANG W T, ZHOU H, DENG G Y, ZHU W, WU Y J, ZOU Z J, WANG Y, LIAO B H . Effects of combined amendment on bioavailability of Pb, Cd, and As in polluted paddy soil. Acta Scientiae Circumstantiae, 2016,36(1):257-263. (in Chinese)
doi: 10.13671/j.hjkxxb.2015.0133 |
|
[3] |
CHANEY R L, REEVES P G, PHILIP P G, SIMMONS R W, WELCH R M, ANGLE J S . An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004,17(5):549-553.
doi: 10.1023/B:BIOM.0000045737.85738.cf pmid: 15688862 |
[4] | 张小敏, 张秀英, 钟太洋, 江洪 . 中国农田土壤重金属富集状况及其空间分布研究. 环境科学, 2014,35(2):692-703. |
ZHANG X M, ZHANG X Y, ZHONG T Y, JIANG H . Spatial distribution and accumulation of heavy metal in arable land soil of China. Environmental Science, 2014,35(2):692-703. (in Chinese) | |
[5] |
史静, 李正文, 龚伟群, 潘根兴 . 2种常规水稻Cd、Zn吸收与器官分配的生育期变化: 品种、土壤和Cd处理的影响. 生态毒理学报, 2007,2(1):32-40.
doi: 10.3969/j.issn.1673-5897.2007.01.005 |
SHI J, LI Z W, GONG W Q, PAN G X . Uptake and partitioning of Cd and Zn by two non-hybrid rice cultivars in different growth stages: Effect of cultivars, soil type and Cd spike. Asian Journal of Ecotoxicology, 2007,2(1):32-40. (in Chinese)
doi: 10.3969/j.issn.1673-5897.2007.01.005 |
|
[6] |
YONG F Y, DOUG H C, DO S K, YUN W L . Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice. Journal of Crop Science & Biotechnology, 2010,13(2):113-119.
doi: 10.1007/s12892-010-0045-4 |
[7] |
叶长城, 陈喆, 彭鸥, 周细红, 铁柏清, 刘孝利, 雷鸣, 魏祥东, 孙健 . 不同生育期Cd胁迫对水稻生长及镉累积的影响. 环境科学学报, 2017,37(8):3201-3206.
doi: 10.13671/j.hjkxxb.2017.0077 |
YE C C, CHEN Z, PENG O, ZHOU X H, TIE B Q, LIU X L, LEI M, WEI X D, SUN J . Effects of cadmium stress on growth and cadmium accumulation in rice at different growth stages. Acta Scientiae Circumstantiae, 2017,37(8):3201-3206. (in Chinese)
doi: 10.13671/j.hjkxxb.2017.0077 |
|
[8] |
GREGER M, LOFSTEDT M . Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 2004,44(2):111-113.
doi: 10.2135/cropsci2004.5010 |
[9] |
KASHIWAGI T, SHINDOH K, HIROTSU N, ISHIMARU K . Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biology, 2009,9(1):8.
doi: 10.1186/1471-2229-9-8 |
[10] |
张振兴, 纪雄辉, 谢运河, 官迪, 彭华, 朱坚, 田发祥 . 水稻不同生育期施用生石灰对稻米镉含量的影响. 农业环境科学学报, 2016,35(10):1867-1872.
doi: 10.11654/jaes.2016-0432 |
ZHANG Z X, JI X H, XIE Y H, GUAN D, PENG H, ZHU J, TIAN F X . Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain. Journal of Agro-Environmental Science, 2016,35(10):1867-1872. (in Chinese)
doi: 10.11654/jaes.2016-0432 |
|
[11] |
靳磊, 胡召华, 纪雄辉, 魏维, 谢运河 . 不同时期喷施Zn肥抑制水稻Cd吸收转运的效果. 湖南农业科学, 2017,8(1):37-40.
doi: 10.16498/j.cnki.hnnykx.2017.008.010 |
JIN L, HU S H, JI X H, WEI W, XIE Y H . Effects of Zinc foliar application at different growth stages on cadmium absorption and transport in rice. Hunan Agricultural Sciences, 2017,8(1):37-40. (in Chinese)
doi: 10.16498/j.cnki.hnnykx.2017.008.010 |
|
[12] |
ZHOU H, ZHU W, YANG W T, GU J F, GAO Z X, CHEN L W, DU W Q, ZHANG P, PENG P Q, LIAO B H . Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicology & Environmental Safety, 2018,152:91-97
doi: 10.1016/j.ecoenv.2018.01.031 pmid: 29407786 |
[13] |
彭鸥, 铁柏清, 叶长城, 张淼, 刘孝利, 魏祥东, 孙健 . 稻米镉关键积累时期研究. 农业资源与环境学报, 2017,34(3):272-279.
doi: 10.13254/j.jare.2017.0035 |
PENG O, TIE B Q, YE C C, ZHANG M, LIU X L, WEI X D, SUN J . The key period of cadmium accumulation in rice. Journal of Agricultural Resources and Environment, 2017,34(3):272-279. (in Chinese)
doi: 10.13254/j.jare.2017.0035 |
|
[14] | 薛应龙 . 植物生理学实验手册. 上海: 上海科学技术出版社, 1985. |
XUE Y L. Experimental Manual of Plant Physiology. Shanghai: Shanghai Scientific & Technical Publishers, 1985. ( in Chinese) | |
[15] |
RODDA M S, LI G, REID R J . The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant & Soil, 2011,347(1/2):105-114.
doi: 10.1007/s11104-011-0829-4 |
[16] | 胡莹, 黄益宗, 段桂兰, 刘云霞 . 镉对不同生态型水稻的毒性及其在水稻体内迁移转运. 生态毒理学报, 2012,7(6):664-670. |
HU Y, HUANG Y Z, DUAN G L, LIU Y X . Cadmium toxicity and its translocation in two ecotype rice cultivars. Asian Journal of Ecotoxicology, 2012,7(6):664-670. (in Chinese) | |
[17] |
胡莹, 黄益宗, 黄艳超, 刘云霞 . 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响. 农业环境科学学报, 2013,32(3):432-437.
doi: 10.11654/jaes.2013.03.004 |
HU Y, HUANG Y Z, HUANG Y C, LIU Y X . Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages. Journal of Agro-Environmental Science, 2013,32(3):432-437. (in Chinese)
doi: 10.11654/jaes.2013.03.004 |
|
[18] | LIU H J, ZHANG J L, CHRISTIE P, ZHANG F S . Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant & Soil, 2007,300(1/2):105-115. |
[19] |
史锟, 张福锁, 刘学军, 张旭东 . 不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响. 农业环境科学学报, 2004,23(1):6-12.
doi: 10.3321/j.issn:1672-2043.2004.01.002 |
SHI K, ZHANG F S, LIU X J, ZHANG X D . Effects of different periods applied Fe 2+ and concentrations on Fe and Cd contents in iron plaque on rice root . Journal of Agro-Environmental Science, 2004,23(1):6-12. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2004.01.002 |
|
[20] | 辜娇峰 . 组配改良剂对稻田镉砷复合污染的调控效果及机制研究[D]. 长沙: 中南林业科技大学, 2017. |
GU J F . Mechanisms and effects of combined amendment regulating paddy soil complexly contaminated with cadmium and arsenic[D]. Changsha: Central South University of Forestry and Technology, 2017. (in Chinese) | |
[21] | 陈宝玉, 王洪君, 曹铁华, 梁烜赫, 杨建, 任军 . 不同磷肥浓度下土壤-水稻系统重金属的时空累积特征. 农业环境科学学报, 2010,29(12):2274-2280. |
CHEN B Y, WANG H J, CAO T H, LIANG X H, YANG J, REN J . Spatio-temporal characteristics of heavy metal accumulation in soil-rice cropping system under different phosphate fertilizer concentrations. Journal of Agro-Environmental Science, 2010,29(12):2274-2280. (in Chinese) | |
[22] |
李冰, 王昌全, 李枝, 李仕贵 . Cd胁迫下杂交水稻对Cd的吸收及其动态变化. 生态环境学报, 2014,23(2):312-316.
doi: 10.3969/j.issn.1674-5906.2014.02.021 |
LI B, WANG C Q, LI Z, LI S G . Absorption of Cd by hybrid rice under the Cd stress and its dynamic change. Ecology and Environmental Sciences, 2014,23(2):312-316. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2014.02.021 |
|
[23] |
莫争, 王春霞, 陈琴, 王海, 薛传金, 王子健 . 重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分布. 环境化学, 2002,21(2):110-116.
doi: 10.3321/j.issn:0254-6108.2002.02.002 |
MO Z, WANG C X, CHEN Q, WANG H, XUE C J, WANG Z J . Distribution and enrichment of heavy metals of Cu, Pb, Zn, Cr and Cd in paddy plant. Environmental Chemistry, 2002,21(2):110-116. (in Chinese)
doi: 10.3321/j.issn:0254-6108.2002.02.002 |
|
[24] |
张路, 张锡洲, 李廷轩, 余海英, 戢林 . Cd胁迫对水稻亲本材料Cd吸收分配的影响. 农业环境科学学报, 2014,33(12):2288-2295.
doi: 10.11654/jaes.2014.12.002 |
ZHANG L, ZHANG X Z, LI T X, YU H Y, JI L . Effects of cadmium stress on uptake and distribution of cadmium in different rice varieties. Journal of Agro-Environmental Science, 2014,33(12):2288-2295. (in Chinese)
doi: 10.11654/jaes.2014.12.002 |
|
[25] |
荆红梅, 郑海雷, 赵中秋, 张春光 . 植物对镉胁迫响应的研究进展. 生态学报, 2001,21(12):2125-2130.
doi: 10.3321/j.issn:1000-0933.2001.12.022 |
JIN H M, ZHENG H L, ZHAO Z Q, ZHANG C G . Progresses of plants response to cadmium. Acta Ecologica Sinica, 2001,21(12):2125-2130. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2001.12.022 |
|
[26] |
张军, 束文圣 . 植物对重金属镉的耐受机制. 植物生理与分子生物学学报, 2006,32(1):1-8.
doi: 10.3321/j.issn:1671-3877.2006.01.001 |
ZHANG J, SHU W S . Mechanisms of heavy metal cadmium tolerance in plants. Journal of Plant Physiology and Molecular Biology, 2006,32(1):1-8. (in Chinese)
doi: 10.3321/j.issn:1671-3877.2006.01.001 |
|
[27] | 陈爱葵, 王茂意, 刘晓海, 曾小龙 . 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013,32(4):514-522. |
CHEN A Q, WANG M Y, LIU X H, ZENG X L . Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecological Science, 2013,32(4):514-522. (in Chinese) | |
[28] |
叶瑶瑶, 王飞娟, 石晓柳, 王高阳, 俞姣, 朱诚 . Cd在水稻籽粒中的积累及运输机制. 园艺与种苗, 2012,11(1):58-61.
doi: 10.3969/j.issn.2095-0896.2012.11.019 |
YE Y Y, WANG F J, SHI X L, WANG G Y, YU J, ZHU C . Mechanisms of Cd accumulation and transportation in rice grain. Horticulture & Seed, 2012,11(1):58-61. (in Chinese)
doi: 10.3969/j.issn.2095-0896.2012.11.019 |
|
[29] |
潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝 . 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016,30(3):273-282.
doi: 10.16819/j.1001-7216.2016.5128 |
PAN J F, WANG B, CUI K H, HUANG J L, NIE L X . Effects of nitrogen application on accumulation and translocation of non- structural carbohydrates in internodes and sheaths of rice. Chinese Journal of Rice Science, 2016,30(3):273-282. (in Chinese)
doi: 10.16819/j.1001-7216.2016.5128 |
|
[30] | 冯雪敏 . 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京: 中国农业科学院, 2017. |
FENG X M . The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese) | |
[31] | 唐皓, 李廷轩, 张锡洲, 余海英, 陈光登 . 水稻镉高积累材料不同生育期镉积累变化特征研究. 农业环境科学学报, 2015,34(3):471-477. |
TANG H, LI T X, ZHANG X Z, YU H Y, CHEN G D . Cadmium accumulation in high cadmium-accumulating rice cultivars at different growth stages. Journal of Agro-Environmental Science, 2015,34(3):471-477. (in Chinese) | |
[32] |
李鹏, 葛滢, 吴龙华, 沈丽波, 谭维娜, 骆永明 . 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探. 中国水稻科学, 2011,25(3):291-296.
doi: 10.3969/j.issn.1001-7216.2011.03.010 |
LI P, GE Y, WU L H, SHEN L B, TAN W N, LUO Y M . Uptake and translocation of cadmium and its physiological effects in two rice cultivars differed in grain cadmium concentration. Chinese Journal of Rice Science, 2011,25(3):291-296. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.03.010 |
|
[33] |
梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天 . 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010,24(4):398-402.
doi: 10.3969/j.issn.1001-7216.2010.04.011 |
LIANG C G, CHEN L P, WANG Y, LIU J, XU G L, LI T . Effects of high temperature on key enzyme activities of nitrogen metabolism and protein content during rice grain filling. Chinese Journal of Rice Science, 2010,24(4):398-402. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2010.04.011 |
|
[34] |
URAGUCHI S, KAMIYA T, SAKAMOTO T, KASAI K, SATO Y, NAGAMURA Y, YOSHIDA A, KYOZUKA J, ISHIKAWA S, FUJIWARA T . Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Science of the USA, 2011,108(52):20959-20964.
doi: 10.1073/pnas.1116531109 pmid: 22160725 |
[35] |
杨居荣, 何孟常, 查燕, 刘虹, 张平 . 稻、麦籽实中Cd的结合形态. 中国环境科学, 2000,20(5):404-408.
doi: 10.3321/j.issn:1000-6923.2000.05.006 |
YANG J R, HE M C, CHA Y, LIU H, ZHANG P . Binding forms of Cd in the rice and wheat seeds. China Environmental Science, 2000,20(5):404-408. (in Chinese)
doi: 10.3321/j.issn:1000-6923.2000.05.006 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|