[1]邓江明, 简令成. 植物抗冻机理研究新进展:抗冻基因表达及其功能. 植物学通报, 2001, 18(5): 521-530.
Deng J M, Jian L C. Advances of studies on plant freezing tolerance mechanism: freezing tolerance gene expression and its function. Chinese Bulletin of Botany, 2001, 18(5): 521-530. (in Chinese)
[2]Bertrand A, Castonguay Y. Plant adaptations to overwintering stresses and implications of climate change. Canadian Journal of Botanical, 2003, 81: 1145-1152.
[3]何涛, 吴学明, 贾敬芬. 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展. 生态学报, 2007, 27(6): 2575-2583.
He T, Wu X M, Jia J F. Research advances in morphology and anatomy of alpine plants growing in the Qinghai-Tibet Plateau and their adaptations to environments. Acta Ecologica Sinica, 2007, 27(6): 2575-2583. (in Chinese)
[4]崔国文, 马春平. 紫花苜蓿叶片形态结构及其与抗寒性的关系. 草地学报, 2007, 15(1): 70-75.
Cui G W, Ma C P. Research on leaf morphology and cold resistance of alfalfa. Acta Agrestia Sinica, 2007, 15(1): 70-75. (in Chinese)
[5]Ristic Z, Ashworth E N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. cv. Columbia during rapid cold acclimation. Protoplasma, 1993, 172: 111-123.
[6]Riederer M. Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. Journal of Experiment Botany, 2006, 57: 2937-2942.
[7]Jenks M A, Eigenbrode S D, Lemieux B. Cuticular waxes of Arabidopsis//Somerville C R, Meyerowitz E M. The Arabidopsis Book, 2002, doi/10.1199/tab.0016.
[8]Kosma D K, Bourdenx B, Bernard A L, Parsons E P, Lu S Y, Joube J M, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 2009, 151: 1918-1929.
[9]Jenks M A, Anderson L, Teusink R, Williams M H. Leaf cuticular waxes of potted rose cultivars as effected by plant development, drought and paclobutrazol treatments. Plant Physiology, 2001, 112: 61-69.
[10]Millar A A, Clemens S, Zachgo S, Giblin M, Taylor D C, Kunst L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. The Plant Cell, 1999, 11(5): 825-838.
[11]Koch K, Hartmann K D, Schreiber L, Barthlott W, Neinhuis C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environmental and Experimental Botany, 2006, 56(1): 1-9.
[12]Mondal S. Defining the molecular and physiological role of leaf cuticular waxes in reproductive stage heat tolerance in wheat [D]. Texas, United States: Texas A & M University, 2011.
[13]王美芳, 陈巨莲, 程登发, 原国辉. 小麦叶片表面蜡质及其与品种抗蚜性的关系. 应用与环境生物学报, 2008, 14(3): 341-346.
Wang M F, Chen J L, Cheng D F, Yuan G H. Epicuticular wax on wheat leaves and its relationship with cultivars resistance to wheat aphids. Chinese Journal of Applied and Environmental Biology, 2008, 14(3): 341-346. (in Chinese)
[14]Shepherd T, Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytologist, 2006, 171: 469-499.
[15]Ashworth E N, Pearce R S. Extracellular freezing in leaves of freezing- sensitive species. Planta, 2002, 214: 798-805.
[16]Ladaniya M S. Physico-chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. Journal of Food Science and Technology- Mysore, 2011, 48:150-158.
[17]Dou H T. Effect of coating application on chilling injury of grapefruit cultivars. Horticulture Science, 2004, 39: 558-561.
[18]王倩, 关雪莲, 胡增辉, 卢存福, 冷平生. 3种景天植物叶片结构特征与抗寒性的关系. 应用与环境生物学报, 2013, 19(2): 280-285.
Wang Q, Guan X L, Hu Z H, Lu C F, Leng P S. Relationship between cold tolerance and leaf structure of the three species of Sedum. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 280-285. (in Chinese)
[19]周玲艳, 姜大刚, 李静, 周海, 曹伟炜, 庄楚雄. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系. 作物学报, 2012, 38(6): 1115-1120.
Zhou L Y, Jiang D G, Li J, Zhou H, Cao W W, Zhuang C X. Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1-homologous genes in rice. Acta Agronomica Sinica, 2012, 38(6): 1115-1120. (in Chinese)
[20]Rashotte A M, Feldmann K A. Correlations between epicuticular wax structures and chemical composition in Arabidopsis thaliana. International Journal of Plant Science, 1998, 159: 773-779.
[21]Von Wettstein-Knowles P. Ultrastructure and origin epicuticular wax tubes. Journal of Ultrastructure Research, 1974, 46: 483-498.
[22]Jeffree C E, Baker E A, Holloway P J. Origins of the fine structure of plant epicuticular waxes//Dickinson C H, Preece T F. Microbiology of Aerial Plant Surfaces. London: Academic Press, 1976: 119-158.
[23]Jetter R, Riederer M. In vitro reconstitution of epicuticular wax crystals: formation of tubular aggregates by long-chain secondary alkanediols. Botanica Acta, 1995, 108: 111-120.
[24]Gauvrit C, Gaillardon P. Effect of low-temperatures on 2,4-D behaviour in maize plants. Weed Research, 1991, 31: 135-142.
[25]Hietala T, Mozes N, Genet M J, Rosenqvist H, Laakso S. Surface lipids and their distribution on willow (Salix) leaves: a combined chemical, morphological and physiochemical study. Colloids and Surfaces B: Biointerfaces, 1997, 8: 205-215.
[26]Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R, Napier J, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERSUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell, 2012, 24: 3106-3118.
[27]Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology, 2011, 156(1): 29-45.
[28]Aarts M G M, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. The Plant Cell, 1995, 7(12): 2115-2127.
[29]Rowland O, Zheng H, Hepworth S R, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty acyl-coA reductase involved in cuticular wax production in Arabidopsis. Plant Physiology, 2006, 142(3): 866-877.
[30]Todd J, Post-Beittenmiller D, Jaworski J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant Journal, 1999, 17(2): 119-30.
[31]Hooker T S, Millar A A, Kunst L. Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiology, 2002, 129(4): 1568-1580.
[32]Hu X J, Zhang Z B, Fu Z Y, Xu P, Hu S B, Li W Q. Significance of a β-ketoacyl-CoA synthase gene expression for wheat tolerance to adverse environments. Biologia Plantarum, 2010, 54(3): 575-578.
[33]Chen X, Goodwin S M, Boroff V L, Liu X, Jenks M A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. The Plant Cell, 2003, 15(5): 1170-1185.
[34]Broun P, Poindexter P, Osborne E, Jiang C, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences, 2004, 101(13): 4706-4711.
[35]Mills D, Zhabg G, Benzioni A. Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. Journal of Plant Physiology, 2001, 158: 1031-1039. |