中国农业科学 ›› 2022, Vol. 55 ›› Issue (7): 1469-1478.doi: 10.3864/j.issn.0578-1752.2022.07.017
• 畜牧·兽医·资源昆虫 • 上一篇
收稿日期:
2021-02-06
接受日期:
2021-09-30
出版日期:
2022-04-01
发布日期:
2022-04-18
通讯作者:
曾振灵
作者简介:
刘教,E-mail: 基金资助:
LIU Jiao(),LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing(
)
Received:
2021-02-06
Accepted:
2021-09-30
Online:
2022-04-01
Published:
2022-04-18
Contact:
ZhenLing ZENG
摘要:
【目的】通过调查前噬菌体在多重耐药大肠杆菌中的分布特征、诱导分离以及前噬菌体中耐药基因与毒力基因的流行状况,为研究前噬菌体介导耐药基因在细菌的传播提供科学依据。【方法】挑选前期保存的2018—2019年广东省分离的131株禽源多重耐药大肠杆菌进行核酸提取及全基因组测序,将二代测序的结果组装拼接成全基因组序列,上传至噬菌体PHASTER网络数据库与数据库中已有的噬菌体基因组序列进行比对分析。利用CGE数据库比对耐药基因与毒力基因,从而获得在前噬菌体上耐药基因与毒力基因的分布情况。温和性噬菌体由丝裂霉素C诱导并使用双层平板法分离纯化。【结果】131株大肠杆菌药物敏感性试验的结果显示,氨苄西林、四环素、氟苯尼考、复方新诺明的耐药率均高达90%以上,其次是头孢类抗生素以及庆大霉素、环丙沙星、美罗培南和黏菌素均在50%左右,替加环素的耐药率达到了0.2%,所有菌株都呈现出多重耐药的现象,均为多重耐药大肠杆菌。131株多重耐药大肠杆菌中共检出736个前噬菌体片段,其中包含329个完整型前噬菌体,其与40个已知数据库噬菌体物种以不同百分比匹配上;可疑型噬菌体有66个,其与20个已知数据库噬菌体物种以不同百分比匹配上;不完整型噬菌体有341个,其与52个已知数据库噬菌体物种以不同百分比匹配上,完整型前噬菌体的基因序列显示出与已知的噬菌体物种的序列相似性最高,平均为58.53%;131株大肠杆菌中平均前噬菌体数量为5.6个,平均总含量为152.4 kb。前噬菌体基因组占其宿主基因组的比例分布在0.58%—5.87%,以3.0%为主。前噬菌体基因组长度范围在2.8—107.9 kb,其中13.0 kb的前噬菌体出现的频次最高,占所有前噬菌体的9.1%。CGE比对结果表明,131株多重耐药大肠杆菌的基因组共在18株前噬菌体序列检测到耐药基因mdf(A)、lnu(G)和mcr-1,其中mdf(A)、lnu(G)和mcr-1检出数分别为16、1和1。71株多重耐药大肠杆菌前噬菌体中携带有6种不同的毒力基因,其中存在部分菌株携带2种或者3种毒力基因,有62株前噬菌体携带端粒酶RNA基因terC,16株前噬菌体携带血清存活率增加基因iss,外膜蛋白酶ompT、黏附素基因iha、cvaC和ABC转运蛋白基因mchF分别在2、2、1和1株前噬菌体中检出。mdf(A)和terC分别是前噬菌体中最常见的耐药基因和毒力基因。温和性噬菌体诱导试验结果显示,前噬菌体的诱导成功率为84.0%,但出现噬菌斑的概率仍比较低。【结论】前噬菌体在多重耐药大肠杆菌中分布广泛且携带有多种耐药基因和毒力基因,温和性噬菌体诱导成功率高,具有携带耐药基因及毒力基因水平传播的风险,需要加强和持续监测。
刘教,刘畅,陈进,王勉之,熊文广,曾振灵. 多重耐药大肠杆菌中前噬菌体的分布特征及诱导分离[J]. 中国农业科学, 2022, 55(7): 1469-1478.
LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation[J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[1] |
SALMOND G P C, FINERAN P C. A century of the phage: Past, present and future. Nature Reviews Microbiology, 2015, 13(12):777-786. doi: 10.1038/nrmicro3564.
doi: 10.1038/nrmicro3564 |
[2] |
HOBBS Z, ABEDON S T. Diversity of phage infection types and associated terminology: The problem with ‘Lytic or lysogenic'. FEMS Microbiology Letters, 2016, 363(7):47. doi: 10.1093/femsle/fnw047.
doi: 10.1093/femsle/fnw047 |
[3] |
MAVRICH T N, CASEY E, OLIVEIRA J, BOTTACINI F, JAMES K, FRANZ C M A P, LUGLI G A, NEVE H, VENTURA M, HATFULL G F, MAHONY J, VAN SINDEREN D. Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Scientific Reports, 2018, 8(1):12772. doi: 10.1038/s41598-018-31181-3.
doi: 10.1038/s41598-018-31181-3 |
[4] |
TORRES-BARCELÓ C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging Microbes & Infections, 2018, 7(1):168. doi: 10.1038/s41426-018-0169-z.
doi: 10.1038/s41426-018-0169-z |
[5] |
SCHMIEGER H, SCHICKLMAIER P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiology Letters, 1999, 170(1):251-256. doi: 10.1111/j.1574-6968.1999.tb13381.x.
doi: 10.1111/j.1574-6968.1999.tb13381.x |
[6] |
DAVIES E V, JAMES C E, WILLIAMS D, O'BRIEN S, FOTHERGILL J L, HALDENBY S, PATERSON S, WINSTANLEY C, BROCKHURST M A. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(29):8266-8271. doi: 10.1073/pnas.1520056113.
doi: 10.1073/pnas.1520056113 |
[7] |
CHEN J, QUILES-PUCHALT N, CHIANG Y N, BACIGALUPE R, FILLOL-SALOM A, CHEE M S J, FITZGERALD J R, PENADÉS J R. Genome hypermobility by lateral transduction. Science, 2018, 362(6411):207-212. doi: 10.1126/science.aat5867.
doi: 10.1126/science.aat5867 |
[8] |
SONG W, STEENSEN K, THOMAS T. HgtSIM: A simulator for horizontal gene transfer (HGT) in microbial communities. PeerJ, 2017, 5:e4015. doi: 10.7717/peerj.4015.
doi: 10.7717/peerj.4015 |
[9] |
VON WINTERSDORFF C J, PENDERS J, VAN NIEKERK J M, MILLS N D, MAJUMDER S, VAN ALPHEN L B, SAVELKOUL P H, WOLFFS P F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 2016, 7:173. doi: 10.3389/fmicb.2016.00173.
doi: 10.3389/fmicb.2016.00173 |
[10] |
LERMINIAUX N A, CAMERON A D S. Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 2019, 65(1):34-44. doi: 10.1139/cjm-2018-0275.
doi: 10.1139/cjm-2018-0275 |
[11] |
SHANG Y, LI D, HAO W, SCHWARZ S, SHAN X, LIU B, ZHANG S M, LI X S, DU X D. A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis. The Journal of Antimicrobial Chemotherapy, 2019, 74:2876-2879.
doi: 10.1093/jac/dkz309 |
[12] |
HÅFSTRÖM T, JANSSON D S, SEGERMAN B. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer. BMC Genomics, 2011, 12(1):395. doi: 10.1186/1471-2164-12-395.
doi: 10.1186/1471-2164-12-395 |
[13] |
SHAABAN S, COWLEY L A, MCATEER S P, JENKINS C, DALLMAN T J, BONO J L, GALLY D L. Evolution of a zoonotic pathogen: Investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing. Microbial Genomics, 2016, 2(12):e000096. doi: 10.1099/mgen.0.000096.
doi: 10.1099/mgen.0.000096 |
[14] |
PLEŠKA M, LANG M, REFARDT D, LEVIN B R, GUET C C. Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nature Ecology & Evolution, 2018, 2(2):359-366. doi: 10.1038/s41559-017-0424-z.
doi: 10.1038/s41559-017-0424-z |
[15] |
GOH S, HUSSAIN H, CHANG B J, EMMETT W, RILEY T V, MULLANY P. Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio, 2013, 4(6):e00840-e00813. doi: 10.1128/mbio.00840-13.
doi: 10.1128/mbio.00840-13 |
[16] | LOHB, CHEN J, MANOHAR P, YU Y, HUA X, LEPTIHN S. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Woqumaid, 2020, 11:579802. |
[17] |
COLAVECCHIO A, CADIEUX B, LO A, GOODRIDGE L D. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family-A review. Frontiers in Microbiology, 2017, 8:1108. doi: 10.3389/fmicb.2017.01108.
doi: 10.3389/fmicb.2017.01108 |
[18] |
MOHAN RAJ J R, VITTAL R, HUILGOL P, BHAT U, KARUNASAGAR I. T4-like Escherichia coli phages from the environment carry blaCTX-M. Letters in Applied Microbiology, 2018, 67(1):9-14. doi: 10.1111/lam.12994.
doi: 10.1111/lam.12994 |
[19] |
ZINDER N D, LEDERBERG J. Genetic exchange in Salmonella. Journal of Bacteriology, 1952, 64(5):679-699. doi: 10.1128/jb.64.5.679-699.1952.
doi: 10.1128/jb.64.5.679-699.1952 pmid: 12999698 |
[20] |
MAHONY J, VAN SINDEREN D. The impact and applications of phages in the food industry and agriculture. Viruses, 2020, 12(2):210. doi: 10.3390/v12020210.
doi: 10.3390/v12020210 |
[21] |
ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology, 2010, 8(4):260-271. doi: 10.1038/nrmicro2319.
doi: 10.1038/nrmicro2319 |
[22] |
COLOMER-LLUCH M, IMAMOVIC L, JOFRE J, MUNIESA M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrobial Agents and Chemotherapy, 2011, 55(10):4908-4911. doi: 10.1128/aac.00535-11.
doi: 10.1128/aac.00535-11 |
[23] |
COLOMER-LLUCH M, JOFRE J, MUNIESA M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE, 2011, 6(3). doi: 10.1371/journal.pone.0017549.
doi: 10.1371/journal.pone.0017549 |
[24] |
LEKUNBERRI I, SUBIRATS J, BORREGO C M, BALCÁZAR J L. Exploring the contribution of bacteriophages to antibiotic resistance. Enviromental Pollution, 2017, 220(pt b):981-984. doi: 10.1016/j.envpol.2016.11.059.
doi: 10.1016/j.envpol.2016.11.059 |
[25] |
SHOUSHA A, AWAIWANONT N, SOFKA D, SMULDERS F J, PAULSEN P, SZOSTAK M P, HUMPHREY T, HILBERT F. Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. Applied and Environmental Microbiology, 2015, 81(14):4600-4606. doi: 10.1128/aem.00872-15.
doi: 10.1128/aem.00872-15 |
[26] |
NOVICK R P, CHRISTIE G E, PENAD S J R. The phage-related chromosomal islands of Gram-positive bacteria. Nature Reviews Microbiology, 2010, 8:541-551.
doi: 10.1038/nrmicro2393 |
[27] |
VARGA M, KUNTOVÁ L, PANTŮČEK R, MAŠLAŇOVÁ I, RŮŽIČKOVÁ V, DOŠKAŘ J. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiology Letters, 2012, 332(2):146-152. doi: 10.1111/j.1574-6968.2012.02589.x.
doi: 10.1111/j.1574-6968.2012.02589.x |
[28] |
MAZAHERI NEZHAD FARD R, BARTON M D, HEUZENROEDER M W. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Letters in Applied Microbiology, 2011, 52(6):559-564. doi: 10.1111/j.1472-765x.2011.03043.x.
doi: 10.1111/j.1472-765x.2011.03043.x |
[29] |
DEDRICK R M, JACOBS-SERA D, BUSTAMANTE C A, GARLENA R A, MAVRICH T N, POPE W H, REYES J C, RUSSELL D A, ADAIR T, ALVEY R, et al. Prophage-mediated defence against viral attack and viral counter-defence. Nature Microbiology, 2017, 2:16251.
doi: 10.1038/nmicrobiol.2016.251 |
[30] |
TRAN P M, FEISS M. φSa3mw Prophage as a Molecular Regulatory Switch of Staphylococcus aureus β -Toxin Production. 2019, 201(14):e00766-18. doi: 10.1128/JB.00766-18.
doi: 10.1128/JB.00766-18 |
[31] |
OGATA S, SUENAGA H, HAYASHIDA S. A temperate phage of Streptomyces azureus. Applied and Environmental Microbiology, 1985, 49(1):201-204. doi: 10.1128/aem.49.1.201-204.1985.
doi: 10.1128/aem.49.1.201-204.1985 |
[32] |
JOFRE J, MUNIESA M. Bacteriophage isolation and characterization: phages of Escherichia coli. Methods in Molecular Biology (Clifton, N J), 2020, 2075:61-79. doi: 10.1007/978-1-4939-9877-7_4.
doi: 10.1007/978-1-4939-9877-7_4 |
[33] |
ARNDT D, MARCU A, LIANG Y, WISHART D S. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Briefings in Bioinformatics, 2019, 20(4):1560-1567. doi: 10.1093/bib/bbx121.
doi: 10.1093/bib/bbx121 |
[34] |
WANG D, LIANG H, CHEN J, MOU Y, QI Y. Structural and environmental features of novel mdfA variant and mdfA genes in recombinant regions of Escherichia coli. Microbial Drug Resistance (Larchmont, N Y), 2014, 20(5):392-398. doi: 10.1089/mdr.2013.0201.
doi: 10.1089/mdr.2013.0201 |
[35] |
BATTAGLIOLI E J, BAISA G A, WEEKS A E, SCHROLL R A, HRYCKOWIAN A J, WELCH R A. Isolation of generalized transducing bacteriophages for uropathogenic strains of Escherichia coli. Applied and Environmental Microbiology, 2011, 77(18):6630-6635. doi: 10.1128/aem.05307-11.
doi: 10.1128/aem.05307-11 |
[36] |
ZHANG A, CALL D R, BESSER T E, LIU J, JONES L, WANG H, DAVIS M A. Β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Research, 2019, 161:335-340. doi: 10.1016/j.watres.2019.06.026.
doi: 10.1016/j.watres.2019.06.026 |
[37] |
CALERO-CÁCERES W, YE M, BALCÁZAR J L. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends in Microbiology, 2019, 27(7):570-577. doi: 10.1016/j.tim.2019.02.008.
doi: 10.1016/j.tim.2019.02.008 |
[38] |
GARIN-FERNANDEZ A, PEREIRA-FLORES E, GLÖCKNER F O, WICHELS A. The North Sea Goes viral: Occurrence and distribution of North Sea bacteriophages. Marine Genomics, 2018, 41:31-41. doi: 10.1016/j.margen.2018.05.004.
doi: 10.1016/j.margen.2018.05.004 |
[39] |
WENDLING C C, REFARDT D, HALL A R. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic- resistance genes peak in different environments. BioRxiv, 2020. DOI: 10.1101/2020.03.13.990044.
doi: 10.1101/2020.03.13.990044 |
[40] |
LEKUNBERRI I, VILLAGRASA M, BALCÁZAR J L, BORREGO C M. Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. The Science of the Total Environment, 2017, 601/602:206-209. doi: 10.1016/j.scitotenv.2017.05.174.
doi: 10.1016/j.scitotenv.2017.05.174 |
[41] |
WANG M, XIONG W, LIU P, XIE X, ZENG J, SUN Y, ZENG Z. Metagenomic insights into the contribution of phages to antibiotic resistance in water samples related to swine feedlot wastewater treatment. Frontiers in Microbiology, 2018, 9:2474. doi: 10.3389/fmicb.2018.02474.
doi: 10.3389/fmicb.2018.02474 |
[42] |
PAN Y, FANG Y, FENG Y, LYU N, CHEN L, LI J, XU X, ZHU B, HU Y. Discovery of mcr-3.1 gene carried by a prophage located in a conjugative IncA/C2 plasmid from a Salmonella Choleraesuis clinical isolate. The Journal of Infection, 2021, 82(3):414-451. doi: 10.1016/j.jinf.2020.09.036.
doi: 10.1016/j.jinf.2020.09.036 |
[43] |
LOH B, CHEN J, MANOHAR P, YU Y, HUA X, LEPTIHN S. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Frontiers in Microbiology, 2020, 11:579802.
doi: 10.3389/fmicb.2020.579802 |
[44] | HSU B B, WAY J C, SILVER P A. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut. mSystems, 2020, 5. |
[45] |
MOLINA F, SIMANCAS A, TABLA R, GÓMEZ A, ROA I, REBOLLO J E. Diversity and local coadaptation of Escherichia coli and coliphages from small ruminants. Frontiers in Microbiology, 2020, 11:564522. doi: 10.3389/fmicb.2020.564522.
doi: 10.3389/fmicb.2020.564522 |
[46] |
FRY B A. Conditions for the infection of Escherichia coli with lambda phage and for the establishment of lysogeny. Journal of General Microbiology, 1959, 21:676-684.
pmid: 13825457 |
[47] |
IMAMOVIC L, BALLESTÉ E, MARTÍNEZ-CASTILLO A, GARCÍA- ALJARO C, MUNIESA M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environmental Microbiology, 2016, 18(3):957-969. doi: 10.1111/1462-2920.13151.
doi: 10.1111/1462-2920.13151 |
[48] |
RUIZ-CRUZ S, PARLINDUNGAN E, ERAZO GARZON A, ALQARNI M, LUGLI G A. Lysogenization of a lactococcal host with three distinct temperate phages provides homologous and heterologous phage resistance. Microorganisms, 2020, 8(11). doi. 10.3390/microorganisms8111685.
doi: 10.3390/microorganisms8111685 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
[3] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[4] | 王雪杨,蒋君瑶,杨璐,邵东延,吴聪明,沈建忠,沈应博,汪洋. 黏菌素促进mcr-1阳性IncI2质粒在大肠杆菌间的接合转移[J]. 中国农业科学, 2022, 55(14): 2862-2874. |
[5] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[6] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[7] | 赫可伟,陈甲法,周子键,吴建宇. 基于宿主诱导的基因沉默技术创制抗拟轮枝镰孢玉米自交系[J]. 中国农业科学, 2021, 54(9): 1835-1845. |
[8] | 王冰,李慧敏,操海群,王桂荣. 挥发性化合物介导的植物-植食性昆虫-天敌三级营养级互作机制及应用[J]. 中国农业科学, 2021, 54(8): 1653-1672. |
[9] | 陈朝喜,李宇涵,谭敏,汪露,黄志宏. 川西北高原牦牛和藏猪源大肠杆菌生物被膜表型、耐药基因、整合酶基因和毒力基因检测[J]. 中国农业科学, 2021, 54(23): 5144-5162. |
[10] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
[11] | 孟祥坤,吴赵露,杨雪梅,官道杰,王建军. 二化螟P糖蛋白基因的克隆分析及对杀虫剂的诱导响应[J]. 中国农业科学, 2021, 54(19): 4121-4131. |
[12] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[13] | 彭蕴,雷天刚,邹修平,张靖芸,张庆雯,姚家欢,何永睿,李强,陈善春. 柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱导表达[J]. 中国农业科学, 2020, 53(9): 1820-1829. |
[14] | 张爱静,李琳琼,王鹏杰,高瑀珑. 热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J]. 中国农业科学, 2020, 53(5): 1046-1057. |
[15] | 柴亚茹,丁一娟,周思钰,杨文静,闫宝琴,远俊虎,钱伟. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定[J]. 中国农业科学, 2020, 53(4): 761-770. |
|