中国农业科学

• 植物保护 • 上一篇    下一篇

稻瘟病菌遗传多样性的研究回顾与展望

沈瑛1;李成云2   

  1. 1、中国水稻研究所,杭州 310006;
    2、云南农业大学生物多样性与病虫害控制教育部重点实验室,昆明 650201
  • 出版日期:2007-12-31 发布日期:2007-12-31
  • 作者简介:沈 瑛(1937-),女,江苏无锡人,研究员,研究方向为水稻品种资源的评价和利用及寄主与病原菌的互作机制。Tel:571-63370327;E-mail:shenying@mail.hz.zj.cn;shenying@fy.hz.zj.cn。李成云(1964-),男,云南祥云人,研究员,研究方向为稻瘟病致病机制。Tel:0871-5227552;E-mail:li.chengyun@gmail.com
  • 基金资助:
    美国洛氏基金(1991~2000)、国家攀登计划(8531050101)、中法先进研究计划(国科生字1997-155)、云南省自然科学基金项目(1999C008Z)、国家自然科学基金(30360061)、欧盟项目(ICA4-CT-2000-30021)

Current Research Status and Future Prospects of Genetic Diversity of Magnaporthe grisea Fungus

SHEN Ying1, LI Cheng-yun2   

  1. 1、China National Rice Research Institute, Hangzhou 310006;
    2、Key Laboratory for Agricultural Biodiversity and Pest Management of China Education Ministry, Yunnan Agricultural University, Kunming 650201
  • Online:2007-12-31 Published:2007-12-31

摘要: 用MGR586/EcoR1组合,将中国分属48个不同致病型的475个菌株区分为56个系谱;用国际4个稻瘟病菌的标准菌株,测定了中国、印度、尼泊尔、孟加拉、越南522个稻瘟菌的交配型及其能育菌株的遗传多样性,率先用SSR标记分析湖南烟溪病圃3年125个稻瘟菌群体的遗传多样性及水稻品种与病菌系谱的互作,将其中105个菌株区分为6个系谱群。选用18省市21小种、9系谱、30个代表菌株,测定了159个国内外不同类型水稻品种的致病性,筛选出CH63、CH72、PH14、PH14D3C12No.7、101/1/1、101/4/8等13个稻瘟病菌稳定鉴别菌系;合作筛选出5组可供稻瘟菌无毒基因分析的菌株。分别用346对SSR引物,于2539×Guyll、CH63×TH16、95-23-4a×94-64-1b三个组合上进行了多态性分析及作图研究.根据后两组的亲本及其杂交后代菌株对K59等12个水稻品种的致病性分离结果,通过SSR标记,分别定位于1、4、7号染色体上,并用RAPD引物对Avr-Xiu进行了标记,为我国稻瘟病菌新的无毒基因标记、定位及其遗传图谱的构建奠定了基础。本文作者结合自身承担的国内外科研项目,回顾了稻瘟病菌遗传多样性的研究成果,并对其今后的研究方向进行了探讨。

关键词: 稻瘟病菌 , 两性菌株 , 交配型 , 遗传多样性 , RFLP , SSR , 无毒基因

Abstract: Four hundred and fifty-five isolates belonging to 48 different pathotypes of Magnaporthe grisea in China have been classified into 56 separate lineages using a digest combination MGR586/EcoR1. The mating type and genetic diversity of 522 M. grisea isolates from China, India, Nepal, Bangladeshi, and Vietnam were detected with 4 international standard isolates. The SSR analysis was firstly used to detect the genetic diversity of 125 rice blast isolates from Yanxi blast nursery in Hunan Province for 3 years and the interaction between blast fungus and rice varieties, 6 genetic lineages were presented among 105 tested isolates. The pathogenicity of 30 representative isolates belonging to 21 races and 9 lineages from 18 provinces in China was tested on 159 rice cultivars from both home and abroad collaborated with CIRAD, the corresponding relationship between races and cultivars and resistance range was exploited. A set of 13 isolates CH63, CH72, PH14, PH14D3C12No.7, 101/1/1, 101/4/8 was selected as a recognized isolates. Seventeen cultivars with known resistance genes, 26 cultivars/lines with new deduced resistance gene Pi-33(t)and 12 parental materials with broad-spectrum resistance were identified. Five crosses of M. grisea were analyzed by our joint research for analysis the avirulence genes. Three combinations of 2539×Guyll, CH63×TH16, 95-23-4a×94-64-1b were tested with 346 pairs of SSR primers for study on their polymorphism and map construction, that integrated the marker number of blast mapping increasing from 152 in 1997 to 306 and also made the density and finesse greatly improved. Based on the pathogenicity test of the parents of the later two combinations to 12 rice cultivars including K59, the avirulence genes were mapped onto No.1, No.4, and No.7 chromosome according to their linked SSR markers respectively. Avr-Xiu was mapped by using RAPD markers. It will facilitate the studies of new avirulence gene analysis, gene mapping and genetic map construction of M. grisea in China. After making a domestic and international cooperation and combining with the results of other researchers’, the authors in present paper looked back the research achivements on genetic diversity of Magnaporthe grisea fungus and discussed its future prospects also.

Key words: Magnaporthe grisea , Hermaphroditic isolates , Mating type , Genetic diversity , RFLP , SSR , Avirulence gene