中国农业科学 ›› 2022, Vol. 55 ›› Issue (17): 3411-3425.doi: 10.3864/j.issn.0578-1752.2022.17.012
胡光明1,2(),张琼1,韩飞1,李大卫1,李作洲1,汪志1,赵婷婷1,田华1,刘小莉1,钟彩虹1()
收稿日期:
2021-11-30
接受日期:
2022-02-21
出版日期:
2022-09-01
发布日期:
2022-09-07
通讯作者:
钟彩虹
作者简介:
胡光明,Tel:15027191724;E-mail: 基金资助:
HU GuangMing1,2(),ZHANG Qiong1,HAN Fei1,LI DaWei1,LI ZuoZhou1,WANG Zhi1,ZHAO TingTing1,TIAN Hua1,LIU XiaoLi1,ZHONG CaiHong1()
Received:
2021-11-30
Accepted:
2022-02-21
Online:
2022-09-01
Published:
2022-09-07
Contact:
CaiHong ZHONG
摘要:
【目的】 基于猕猴桃全基因组数据,开发、筛选一批多态性高、通用性强的SSR引物,为猕猴桃属种质资源遗传多样性分析、品种鉴定等奠定基础。【方法】 基于‘红阳’猕猴桃全基因组序列,设计并合成435对SSR引物,采用荧光标记毛细管电泳进行等位变异检测。首先,采用遗传差异较大的5份猕猴桃种质资源对引物进行有效性筛选;其次,选择9个物种或杂交组合的16份猕猴桃种质资源开展引物复筛;最后,利用所选引物对国家猕猴桃种质资源圃内猕猴桃属51个类型共225份种质资源进行基因分型及亲缘聚类分析。【结果】 从435对引物中初筛到216对有效性引物,经复筛确定分布于29条染色体上的67对引物为最终核心引物。67对引物在16份种质中共得到842个等位变异,每个位点检测到等位变异6—18个,平均等位基因数(Na)为12.57个;有效等位基因数(Ne)为3.27(A-Geo-149)—13.84(A-Geo-407)个,平均为8.18个;观测杂合度(Ho)为0.60(A-Geo-073)—0.93(A-Geo-158),平均为0.77;期望杂合度(He)为0.72(A-Geo-149)—0.92(A-Geo-101、A-Geo-158),平均为0.85;多态性信息含量(PIC)为0.67(A-Geo-149)—0.92(A-Geo-158),平均为0.84;Shannon’s信息指数(I)为1.47(A-Geo-149)—2.73(A-Geo-101),平均为2.22,说明引物的多态性极高,适用于猕猴桃属种质资源的亲缘关系及遗传多样性分析,225份种质资源聚类结果能明确揭示猕猴桃属植物的亲缘关系。【结论】 筛选出的SSR引物稳定、可靠,多态性与通用性高,可作为核心引物用于猕猴桃属植物种质资源鉴定、指纹图谱构建、核心种质挖掘和遗传多样性分析等研究。
胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425.
HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia[J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
表1
用于引物筛选的16份种质材料"
序号 Order | 种质名称或代号 Name or code | 物种或杂交后代 Species or hybrid offspring |
---|---|---|
1 | 磨山雄2号 Moshan NO.2♂ | 中华猕猴桃 A. chinensis var. chinensis |
2 | 红阳 Hongyang | 中华猕猴桃 A. chinensis var. chinensis |
3 | 金农 Jinnong | 中华猕猴桃 A. chinensis var. chinensis |
4 | 东红 Donghong | 中华猕猴桃 A. chinensis var. chinensis |
5 | 桂海4号 Guihai NO.4 | 中华猕猴桃 A. chinensis var. chinensis |
6 | 金怡 Jinyi | 中华猕猴桃 A. chinensis var. chinensis |
7 | 徐香 Xuxiang | 美味猕猴桃 A. chinensis var. deliciosa |
8 | 山梨RE63104 Shanli RE63104 | 山梨猕猴桃 A. rufa |
9 | 毛花6113 Maohua 6113 | 毛花猕猴桃 A. eriantha |
10 | 中科猕枣雄1号 Mizao NO.1♂ | 软枣猕猴桃 A. arguta |
11 | 大籽6215 Dazi 6215 | 大籽猕猴桃 A. macrosperma var. macrosperma |
12 | 异色8511 Yise 8511 | 异色猕猴桃 A. callosa var. discolor |
13 | 满天红2号 Mantianhong NO.2 | 毛花猕猴桃×中华猕猴桃A. eriantha×A. chinensis |
14 | B35-43 | 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis |
15 | B36-411 | 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis |
16 | B35-71 | 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis |
表2
用于猕猴桃属植物亲缘关系分析的材料"
物种或杂交后代 Species or hybrid offspring | 数量 Number | 代号 Code | 物种或杂交后代 Species or hybrid offspring | 数量 Number | 代号 Code | |
---|---|---|---|---|---|---|
软枣猕猴桃 | 21 | A. arguta var. arguta 1-21 | 毛叶硬齿猕猴桃 | 2 | A. callosa var. strigillosa 1-2 | |
毛花猕猴桃 | 20 | A. eriantha 1-20 | 葡萄叶猕猴桃 | 2 | A. vitifolia 1-2 | |
中华猕猴桃 | 20 | A. chinensis var. chinensis 1-20 | 桃花猕猴桃 | 2 | A. persicina 1-2 | |
美味猕猴桃 | 15 | A. chinensis var. deliciosa 1-15 | 小叶猕猴桃 | 2 | A. lanceolata 1-2 | |
大籽猕猴桃 | 13 | A. macrosperma var. macrosperma 1-13 | 条叶猕猴桃 | 1 | A. fortunati 1 | |
狗枣猕猴桃 | 12 | A. kolomikta 1-12 | 金花猕猴桃 | 1 | A. chrysantha 1 | |
京梨猕猴桃 | 11 | A. callosa var. henryi 1-11 | 大花猕猴桃 | 1 | A. grandiflora 1 | |
长叶猕猴桃 | 10 | A. hemsleyana 1-10 | 革叶猕猴桃 | 1 | A. rubricaulis var. coriacea 1 | |
对萼猕猴桃 | 7 | A. valvata 1-7 | 湖北猕猴桃 | 1 | A. hubeiensis 1 | |
黑蕊猕猴桃 | 7 | A. melanandra var. melanandra 1-7 | 花楸猕猴桃 | 1 | A. sorbifolia 1 | |
红茎猕猴桃 | 6 | A. rubricaulis var. rubricaulis 1-6 | 滑叶猕猴桃 | 1 | A. laevissima 1 | |
山梨×中华 | 6 | A. rufa×A. chinensis 1-6 | 漓江猕猴桃 | 1 | A. lijiangensis 1 | |
黄毛猕猴桃 | 5 | A. fulvicoma var. fulvicoma 1-5 | 卵圆叶猕猴桃 | 1 | A. indochinensis var. ovatifolia 1 | |
临桂猕猴桃 | 5 | A. linguiensis 1-5 | 梅叶猕猴桃 | 1 | A. macrosperma var. mumoides 1 | |
异色猕猴桃 | 5 | A. callosa var. discolor 1-5 | 美味×(中华×毛花) | 1 | A. deliciosa×(chinensis×eriantha) 1 | |
毛花×中华 | 4 | A. eriantha×A.chinensis 1-4 | 融水猕猴桃 | 1 | A. rongshuiensis 1 | |
蒙自猕猴桃 | 4 | A. henryi 1-4 | 肉叶猕猴桃 | 1 | A. carnosifolia 1 | |
粉毛猕猴桃 | 4 | A. farinosa 1-4 | 网脉猕猴桃 | 1 | A. cylindrica var. reticulata 1 | |
簇花猕猴桃 | 3 | A. fasciculoides var. fasciculoides 1-3 | 显脉猕猴桃 | 1 | A. venosa 1 | |
白背叶猕猴桃 | 3 | A. hypoleuca 1-3 | 浙江猕猴桃 | 1 | A. zhejiangensis 1 | |
山梨猕猴桃 | 3 | A. rufa 1-3 | 长果猕猴桃 | 1 | A. longicarpa 1 | |
陕西猕猴桃 | 3 | A. arguta var. giraldii 1-3 | 长绒猕猴桃 | 1 | A. latifolia var. mollis 1 | |
硬齿猕猴桃 | 3 | A. callosa var. callosa 1-3 | 中华×(毛花×中华) | 1 | A. chinensis×(eriantha×chinensis) 1 | |
安息香猕猴桃 | 2 | A. styracifolia 1-2 | 中华×美味 | 1 | A. chinensis×A. deliciosa 1 | |
葛枣猕猴桃 | 2 | A. polygama 1-2 | 中越猕猴桃 | 1 | A. indochinensis var. indochinensis 1 | |
阔叶猕猴桃 | 2 | A. latifolia var. latifolia 1-2 |
表3
67对SSR核心引物基本信息及在16份种质中的遗传多样性"
位点 Locus | 染色体位置 Chromosome | 重复基序 Repeat sequence | 正向引物序列 Forward primer sequence | 反向引物序列 Reverse primer sequence | 退火温度 F/R annealing temperature (℃) | 产物大小 Fragment size (bp) | 等位 基因数 Na | 有效等位基因数 Ne | 观测杂 合度 Ho | 期望杂 合度 He | 多态信 息含量 PIC | Shannon’s 信息指数 I |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A-Geo011 | 1 | AC | CCACTTTATGAGGGGAAACACAAG | CCATTAAAGTCACTGTCCCAAAGG | 63.00/63.00 | 122-162 | 11 | 6.44 | 0.79 | 0.87 | 0.85 | 2.19 |
A-Geo013 | 1 | TC | CTTTCCTCTCGTTCTTCGTATGGA | GTGGTTCTTGGTTTCAAGATTTGG | 63.01/63.01 | 109-157 | 14 | 7.76 | 0.77 | 0.83 | 0.82 | 2.19 |
A-Geo014 | 1 | TC | TGGTTAGTGCCTTCTTGTGTTGAA | TAATTTGGGGGCTTGAATGTATTG | 63.06/63.01 | 130-186 | 17 | 13.12 | 0.77 | 0.90 | 0.90 | 2.59 |
A-Geo018 | 10 | CT | GCCTTTAGAAGAAAAAGGCGGATA | AAGATAAAGAAAAGGCGTGGAAGC | 63.01/63.12 | 144-178 | 14 | 9.45 | 0.9 | 0.91 | 0.90 | 2.51 |
A-Geo029 | 10 | TCTATA | ACCGGTTGATTGTCTCTTCCATTA | TTTTTACTTCGAGAGCAGGGTTTG | 63.01/62.93 | 150-192 | 11 | 7.13 | 0.69 | 0.83 | 0.82 | 2.07 |
A-Geo038 | 11 | TG | CCGATACCTCCAATTAGTGCAAAC | AAGAATGGGCAGAGAACTCAAGTG | 62.94/63.12 | 141-185 | 12 | 8.52 | 0.76 | 0.81 | 0.80 | 2.07 |
A-Geo042 | 11 | AG | CACTTTTCATCCAAGTTTGTGCAG | TAAACGCTTTTTCGAGAACTCAGG | 63.06/63.04 | 133-173 | 15 | 7.53 | 0.83 | 0.87 | 0.86 | 2.38 |
A-Geo049 | 12 | AG | CAGAGGTTCTGCTATTCTTGCCAT | TGTTAGGCTTCTTCCACTTCCTTG | 63.04/63.02 | 128-176 | 17 | 9.80 | 0.83 | 0.90 | 0.89 | 2.53 |
A-Geo054 | 12 | TC | AAAAACCTCACCTCAAACATCATCA | ATCTTCACCAGGACAAAGCTCAAC | 63.02/63.03 | 113-167 | 18 | 11.98 | 0.86 | 0.91 | 0.91 | 2.65 |
A-Geo068 | 13 | TC | CCACTCAAATTTTGGAAACCATTC | AATTGGAGGGATCAGATTATGCAA | 62.80/62.90 | 107-129 | 7 | 4.84 | 0.65 | 0.81 | 0.78 | 1.78 |
A-Geo073 | 13 | AGA | AACTAGCTGGGATGCAAGGGTT | GAGGGATATTACAAGCTTGACCAGG | 63.33/63.30 | 109-127 | 8 | 4.40 | 0.60 | 0.80 | 0.77 | 1.81 |
A-Geo083 | 14 | TC | CCGTCTCCTTCCTTACAAAACCTT | CGCACCTGTACAATGACAAAAGAC | 62.99/62.97 | 116-148 | 10 | 6.39 | 0.66 | 0.75 | 0.73 | 1.78 |
A-Geo096 | 15 | TGTA | AAATGCTTATACATTGGGTGGTGG | ATCTCACCACTTCTTCGATACCCA | 63.03/63.22 | 130-162 | 12 | 5.73 | 0.7 | 0.76 | 0.73 | 1.88 |
A-Geo101 | 15 | GA | ACTAGAGACCAATGACCGACCAAC | CCAACAACCAATAAAGCAACCAAT | 62.81/63.13 | 119-163 | 18 | 12.63 | 0.83 | 0.92 | 0.91 | 2.73 |
A-Geo117 | 16 | GGA | ATAGCCCAAAAGGACAGGTGTGTA | CATCCTAAAGTGTTCCAAACCCAC | 63.03/62.91 | 106-166 | 9 | 6.32 | 0.74 | 0.85 | 0.83 | 2.06 |
A-Geo120 | 16 | AAATCC | TTGAAAAATACAAACCATCCCACC | GTTCTCACTCCTCTTGGACCGAT | 63.01/63.10 | 141-183 | 11 | 6.84 | 0.74 | 0.82 | 0.8 | 2.03 |
A-Geo131 | 17 | TC | TGCTACGGATCAGTACCTTGATGA | CGAAGAAAGGCAGCTTAAATTCAGT | 63.05/63.23 | 133-169 | 9 | 5.50 | 0.76 | 0.81 | 0.78 | 1.87 |
A-Geo141 | 18 | GA | TTTTGTGCATTCTTACTCTGCATCA | TAAACACCATGATCAACGCCTATG | 63.08/63.06 | 160-188 | 12 | 9.18 | 0.79 | 0.86 | 0.85 | 2.27 |
A-Geo142 | 18 | CT | TCCAAAACCACCTACACAACTCCT | GATGAATAGGCGACAGCAAATACC | 63.12/63.05 | 127-159 | 16 | 12.49 | 0.82 | 0.91 | 0.90 | 2.60 |
A-Geo148 | 18 | GAT | TGAGTCAAATGGGGAAATCTCCTA | AGTACGATGATTGTGTGCACGAGT | 63.08/63.10 | 114-162 | 15 | 6.96 | 0.78 | 0.87 | 0.86 | 2.39 |
A-Geo149 | 18 | TGTT | ATTGGTGCTTCGAATTTTTGTTGT | TTCAAAAACTTCTGCCGAGAAAAC | 62.95/62.93 | 125-145 | 6 | 3.27 | 0.61 | 0.72 | 0.67 | 1.47 |
A-Geo154 | 19 | GA | ATTCAAACCCAAATAAAACACCCC | TCCTCGAGTATCTCGCTGCC | 63.08/62.91 | 131-163 | 11 | 8.17 | 0.65 | 0.86 | 0.85 | 2.17 |
A-Geo156 | 19 | AG | AAAATGAGCACCCAACTGAATCAT | GTCAACACCAGATCTGAGGTCCTT | 63.03/63.01 | 110-164 | 13 | 8.00 | 0.78 | 0.85 | 0.84 | 2.24 |
位点 Locus | 染色体位置 Chromosome | 重复基序 Repeat sequence | 正向引物序列 Forward primer sequence | 反向引物序列 Reverse primer sequence | 退火温度 F/R annealing temperature (℃) | 产物大小 Fragment size (bp) | 等位 基因数 Na | 有效等位基因数 Ne | 观测杂 合度 Ho | 期望杂 合度 He | 多态信 息含量 PIC | Shannon’s 信息指数 I |
A-Geo158 | 19 | GA | GGCTCTACACAGCTTGATCTCCAT | AAATCAAAAGCATGGAAACCTTCA | 63.15/63.02 | 134-166 | 16 | 12.25 | 0.93 | 0.92 | 0.92 | 2.66 |
A-Geo167 | 2 | TC | TCTGCAGAGACTGATCCAACAAAC | TTCGCTACAAGAGTGCTCAAAGTG | 62.94/63.08 | 90-112 | 12 | 6.06 | 0.80 | 0.82 | 0.80 | 2.10 |
A-Geo188 | 20 | GA | CCACTCAACACCAAATTACAACCA | GCTGGTCTTGCTTGTCTTTCTCTC | 63.04/63.04 | 137-181 | 15 | 10.8 | 0.80 | 0.89 | 0.88 | 2.45 |
A-Geo194 | 20 | TGTA | CAGGGAAGAACAGGTTGTTTATGG | CGGCATAAGAATTTGAGATGAAGC | 63.00/63.24 | 139-187 | 13 | 9.66 | 0.78 | 0.87 | 0.86 | 2.32 |
A-Geo198 | 21 | TC | GGCTGTGAAAATGGTTTCGATAAG | GAATGTTTAGCCTGCAACTGTGTG | 63.03/63.09 | 129-167 | 17 | 11.45 | 0.74 | 0.90 | 0.89 | 2.55 |
A-Geo210 | 21 | CACCTC | ATGAACGGGGTAATCTAGCACTCA | TCATGAGATTTCCGATCTACCAAAA | 63.13/63.01 | 151-175 | 6 | 4.17 | 0.62 | 0.80 | 0.77 | 1.71 |
A-Geo218 | 22 | CT | AACTCCATTTCGTGTGTGCTTGTA | GAAATAAGCCCTGAGGTCCTGAAT | 62.97/62.99 | 155-181 | 11 | 8.34 | 0.70 | 0.85 | 0.83 | 2.15 |
A-Geo219 | 22 | TC | TGTTAAGGCCTTGCATTAGTCACA | CACTAGAGAAGGAGGTGAACCCAA | 62.97/62.99 | 129-179 | 12 | 6.16 | 0.73 | 0.82 | 0.80 | 2.06 |
A-Geo227 | 23 | AG | CATAGCCTCTTAGCAACCACAGGT | CCTCTCTTTGCTCCAACTCAACTC | 62.95/62.91 | 160-190 | 12 | 8.98 | 0.85 | 0.87 | 0.86 | 2.29 |
A-Geo229 | 23 | CT | CTTTGATCGTCTCAGACCCACTTT | ATTCAGGTGTGAAAAATTGAGGGA | 63.01/63.00 | 146-200 | 17 | 11.05 | 0.80 | 0.86 | 0.85 | 2.40 |
A-Geo238 | 23 | GAT | CACTTGTGCTCACAACTTGGTAGG | TGAAGGGTTCTAAAAGCATGGAAA | 63.18/63.11 | 120-168 | 12 | 7.91 | 0.72 | 0.80 | 0.78 | 2.03 |
A-Geo249 | 24 | AG | GACTCTTTGCAAACAACAAGCTCA | GGATTCAAAAGAGGTGTCAGTCTCA | 62.97/63.01 | 154-182 | 13 | 9.18 | 0.85 | 0.89 | 0.88 | 2.38 |
A-Geo257 | 25 | GA | GTTGTCAGCGAAAACAATCACATC | ATCACCAAACCGAAAACGATTCTA | 62.97/62.92 | 111-147 | 15 | 9.03 | 0.81 | 0.88 | 0.86 | 2.37 |
A-Geo266 | 25 | TC | CTCCAGTGGGTTTCTCCTATCTGA | GCACTAACATCAACACGAACCTTG | 62.98/62.97 | 124-156 | 12 | 7.88 | 0.77 | 0.86 | 0.84 | 2.21 |
A-Geo275 | 26 | GA | GGAATTAAAGGGATTGGATGAAGG | TTACACTTCTTAACTTGGCGCCTC | 62.96/62.96 | 105-131 | 11 | 7.23 | 0.73 | 0.86 | 0.84 | 2.17 |
A-Geo290 | 27 | GA | AACTTACCTGATTACCCACAGCCA | ACCATGAATCTTCCCCCTGTATTT | 63.03/62.97 | 92-134 | 13 | 8.65 | 0.78 | 0.83 | 0.82 | 2.19 |
A-Geo293 | 27 | TC | GCTCTCAGGTTATTCACTAGCCCA | ATGGGTTTCTGGGATAAGCATTTT | 63.04/63.00 | 146-170 | 12 | 7.69 | 0.81 | 0.86 | 0.85 | 2.20 |
A-Geo302 | 28 | TC | ATCGCGATCTCTGCTAATTCAAAG | CTCAACATCGAGACCTTCTCACAA | 63.05/62.92 | 113-161 | 15 | 10.12 | 0.81 | 0.9 | 0.89 | 2.51 |
A-Geo303 | 28 | GA | TACCAATGAGCGCATAGTTCTCAA | TCCCTCAATCACAAGCCTAGTAGC | 63.07/63.04 | 152-176 | 10 | 6.73 | 0.78 | 0.83 | 0.82 | 2.05 |
A-Geo305 | 28 | CT | TAATCGTCATCTTCTCTTCCTCCG | CTCTCTCCTCTTGTTTGAAGTGGC | 63.00/62.91 | 128-160 | 11 | 7.35 | 0.77 | 0.82 | 0.81 | 2.08 |
A-Geo307 | 28 | GA | TTCACGGTGTTAAAGGGTCTTCAT | CAAAAACCCCTAGACTCAGCTTCA | 63.02/63.02 | 96-122 | 13 | 8.69 | 0.89 | 0.87 | 0.85 | 2.23 |
A-Geo311 | 28 | AC | TGTTTTCTCCGAAATCAAACGAAT | TTTTGCTTCCAAGTTCAAGAAAGG | 63.02/62.92 | 131-159 | 12 | 5.83 | 0.63 | 0.80 | 0.77 | 1.95 |
A-Geo316 | 29 | AG | CAAATTGCACCCAAGTACAATCAA | ATGTGGTCCTGAAAATGTCCAACT | 63.06/63.01 | 120-138 | 9 | 6.82 | 0.86 | 0.86 | 0.84 | 2.09 |
位点 Locus | 染色体位置 Chromosome | 重复基序 Repeat sequence | 正向引物序列 Forward primer sequence | 反向引物序列 Reverse primer sequence | 退火温度 F/R annealing temperature (℃) | 产物大小 Fragment size (bp) | 等位 基因数 Na | 有效等位基因数 Ne | 观测杂 合度 Ho | 期望杂 合度 He | 多态信 息含量 PIC | Shannon’s 信息指数 I |
A-Geo323 | 29 | GT | GAAATTCACAAAACTCATTTCGGC | GCCTACCACACATCACCACAATAA | 63.03/63.07 | 121-147 | 9 | 4.16 | 0.72 | 0.8 | 0.77 | 1.85 |
A-Geo335 | 3 | AG | GTAAAGATTTTGGCATTGCTGACC | GACCAAAAGAGTCATCCTGACGTT | 63.05/62.91 | 119-157 | 16 | 9.85 | 0.86 | 0.91 | 0.90 | 2.60 |
A-Geo341 | 3 | AG | AATCATGGAAGGGGCTAGAGAATC | CAATCAAGTGCTTGTGTAGTTGGG | 62.98/62.96 | 146-178 | 14 | 9.13 | 0.8 | 0.89 | 0.88 | 2.44 |
A-Geo344 | 3 | GTGA | CGAGAATGATGGAGAGAAGAGAGC | CGGAGTATCACAGAGCCCTAGAAA | 63.00/63.02 | 117-169 | 15 | 10.12 | 0.77 | 0.86 | 0.85 | 2.36 |
A-Geo350 | 4 | AG | AGATAGGGCATACCGTCTTCTTCC | ACACAATAAGCCCTAACTCCCCTC | 63.00/62.90 | 132-170 | 14 | 7.02 | 0.71 | 0.85 | 0.83 | 2.22 |
A-Geo361 | 5 | AG | CGCTCATTTTCTTGGGTTAATGAC | AAAGTGGTGGGAGTCCAATTTGT | 63.03/63.00 | 137-171 | 10 | 7.18 | 0.67 | 0.81 | 0.79 | 1.98 |
A-Geo362 | 5 | GA | TATATCCCCTCCGTATACCAACCC | GGAGGCTATTATGTTGGCTAGGCT | 63.08/63.03 | 82-118 | 12 | 9.45 | 0.74 | 0.88 | 0.87 | 2.32 |
A-Geo365 | 5 | CT | TCATCAACGAAACAAAAGCCCTAT | GTTAGGTTTTTGCACAAAGCAGAGA | 63.03/62.97 | 119-147 | 12 | 8.68 | 0.87 | 0.85 | 0.84 | 2.22 |
A-Geo369 | 5 | CT | GAAGACACCATGGATCAGATACCC | GTAACATCCACAAGTTGGGAAAGC | 62.99/63.04 | 153-179 | 11 | 6.25 | 0.75 | 0.84 | 0.82 | 2.09 |
A-Geo377 | 6 | AG | ATCGAAGCCATTACATAGCCGTTA | AAGATGATTGCGAGGAGAGAAATG | 62.96/63.01 | 150-176 | 13 | 8.22 | 0.81 | 0.88 | 0.87 | 2.33 |
A-Geo388 | 6 | CAG | TTGCATATTAGTGTCGATGCTCGT | TTCTCAATGCAGTAGAAGCCACAG | 62.99/62.96 | 105-129 | 9 | 6.31 | 0.79 | 0.85 | 0.84 | 2.05 |
A-Geo393 | 7 | GA | TCCTGTAATTAGTGGGACCCTTCA | CCAAAGATTCTTCAGTTCACGCTT | 62.99/63.03 | 139-183 | 18 | 10.78 | 0.82 | 0.88 | 0.87 | 2.51 |
A-Geo397 | 7 | CT | AATGGGTCCCACAACTGTTTTCTA | GATGATCCTCCATAGGGATCTGTG | 62.91/63.08 | 152-186 | 16 | 11.04 | 0.79 | 0.91 | 0.90 | 2.59 |
A-Geo401 | 7 | TG | CTCATCTTCCTCACCCTCCTCATA | TTACACATCACCCACAATTGAACC | 62.97/62.93 | 98-134 | 13 | 7.95 | 0.79 | 0.87 | 0.86 | 2.29 |
A-Geo403 | 7 | TGA | AAGCGTGACAAACGGATCTCTAAC | GAAAGGTCAACACCTGGCTGTAGT | 62.95/62.94 | 160-178 | 8 | 4.97 | 0.64 | 0.82 | 0.79 | 1.87 |
A-Geo407 | 8 | TC | ACCCAACAGAAAGAACACCATCAT | TCAATCTGCAAATTTCTGGGTTTT | 63.01/63.02 | 88-132 | 17 | 13.84 | 0.82 | 0.88 | 0.88 | 2.54 |
A-Geo415 | 8 | GA | ATAATCAGGGAAAACGGATCGAAT | AGCAACAATTGGACAAGAAATGGT | 62.99/63.04 | 151-179 | 13 | 7.64 | 0.76 | 0.88 | 0.87 | 2.37 |
A-Geo417 | 8 | TCA | CTTCTTGGCAATGTACTCATGTGG | TTCATGGAAAAAGCTCAAAGAAGG | 62.95/62.91 | 124-160 | 11 | 8.03 | 0.81 | 0.89 | 0.88 | 2.31 |
A-Geo418 | 8 | CAT | TCGGGTGATGTTTTCTCCACTATT | AGATCAATTTCTCGACGATTCAGC | 63.01/63.03 | 159-177 | 10 | 5.02 | 0.82 | 0.79 | 0.77 | 1.89 |
A-Geo426 | 9 | AG | TTTCTTTTTGAACAGATTCATCCCA | ATTTGAGGTGAAGGATTGCACATT | 63.00/63.03 | 80-112 | 14 | 10.29 | 0.89 | 0.91 | 0.90 | 2.52 |
A-Geo427 | 9 | AC | CTTATTCCTCCCTTCGCTTTGAAT | CACGTAGATCCGTCAACCTTAACC | 62.99/63.03 | 148-174 | 12 | 7.50 | 0.77 | 0.85 | 0.83 | 2.18 |
平均 Average | 12.57 | 8.18 | 0.77 | 0.85 | 0.84 | 2.22 |
[1] | 黄宏文.猕猴桃属分类、 资源、驯化、栽培. 北京: 科学出版社, 2013. |
HUANG H W. Actinidia Taxonomy Germplasm Domestication Cultivation. Beijing: Science Press, 2013. (in Chinese) | |
[2] | 张婷婷, 贾敏, 蒋益萍, 青梅, 辛海量. 猕猴桃属植物化学成分及药理作用研究概述. 时珍国医国药, 2019, 30(9): 2229-2232. |
ZHANG T T, JIA M, JIANG Y P, QING M, XIN H L. Review on chemical constituents and pharmacological effects of Actinidia. Lishizhen Medicine and Materia Medica Research, 2019, 30(9): 2229-2232. (in Chinese) | |
[3] |
BAI D F, LI Z, HU C G, ZHANG Y J, MUHAMMAD A, ZHONG Y P, FANG J B. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress. Scientia Horticulturae, 2021, 281(4): 109994.
doi: 10.1016/j.scienta.2021.109994 |
[4] |
LI D W, LIU Y F, LI X W, RAO J Y, YAO X H, ZHONG C H. Genetic diversity in kiwifruit polyploid complexes: Insights into cultivar evaluation, conservation, and utilization. Tree Genetics & Genomes, 2014, 10(5): 1451-1463. doi: 10.1007/s11295-014-0773-6.
doi: 10.1007/s11295-014-0773-6 |
[5] |
赵成日. 中韩野生软枣猕猴桃种质资源遗传多样性分析. 果树学报, 2018, 35(9): 1043-1051. doi: 10.13925/j.cnki.gsxb.20180121.
doi: 10.13925/j.cnki.gsxb.20180121 |
ZHAO C R. The genetic diversity of wild Actinidia arguta germplasm resources from China and South Korea. Journal of Fruit Science, 2018, 35(9): 1043-1051. doi: 10.13925/j.cnki.gsxb.20180121. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20180121 |
|
[6] |
张安世, 司清亮, 齐秀娟, 张中海. 猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建. 江苏农业学报, 2018, 34(1): 138-144. doi: 10.3969/j.issn.1000-4440.2018.01.020.
doi: 10.3969/j.issn.1000-4440.2018.01.020 |
ZHANG A S, SI Q L, QI X J, ZHANG Z H. Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 138-144. doi: 10.3969/j.issn.1000-4440.2018.01.020. (in Chinese)
doi: 10.3969/j.issn.1000-4440.2018.01.020 |
|
[7] |
CHO K H, KWACK Y B, PARK S J, KIM S H, LEE H C, CHUNG K H, JUN J H. Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification. Horticulture, Environment, and Biotechnology, 2020, 61(2): 395-406. doi: 10.1007/s13580-020-00227-9.
doi: 10.1007/s13580-020-00227-9 |
[8] |
王悦星, 周婉莹, 张文慧, 吴婉婉, 张晓娟, 于月华. 利用SCoT分子标记分析85个猕猴桃品种(系)及野生近缘种的遗传结构. 果树学报, 2021, 38(7): 1044-1054. doi: 10.13925/j.cnki.gsxb.20200563.
doi: 10.13925/j.cnki.gsxb.20200563 |
WANG Y X, ZHOU W Y, ZHANG W H, WU W W, ZHANG X J, YU Y H. Genetic structure analysis of 85 kiwifruit varieties(lines) and wild relatives by SCoT molecular markers. Journal of Fruit Science, 2021, 38(7): 1044-1054. doi: 10.13925/j.cnki.gsxb.20200563. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20200563 |
|
[9] | 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019, 52(15): 2567-2585. |
WANG Y L, HUANG B Y, WANG S Y, DU P, QI F Y, FANG Y J, SUN Z Q, ZHENG Z, DONG W Z, ZHANG X Y. Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Scientia Agricultura Sinica, 2019, 52(15): 2567-2585. (in Chinese) | |
[10] |
LI Y C, KOROL A B, FAHIMA T, BEILES A, NEVO E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 2002, 11(12): 2453-2465. doi: 10.1046/ j.1365-294x.2002.01643.x.
doi: 10.1046/ j.1365-294x.2002.01643.x |
[11] |
KASHI Y, KING D G. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 2006, 22(5): 253-259. doi: 10.1016/j.tig.2006.03.005.
doi: 10.1016/j.tig.2006.03.005 |
[12] |
VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 2005, 23(1): 48-55. doi: 10.1016/j.tibtech.2004.11. 005.
doi: 10.1016/j.tibtech.2004.11. 005 |
[13] |
WEISING K, FUNG R W M, KEELING D J, ATKINSON R G, GARDNER R C. Characterisation of microsatellites from Actinidia chinensis. Molecular Breeding, 1996, 2(2): 117-131. doi: 10.1007/ BF00441427.
doi: 10.1007/ BF00441427 |
[14] |
HUANG W G, CIPRIANI G, MORGANTE M, TESTOLIN R. Microsatellite DNA in Actinidia chinensis: Isolation, characterisation, and homology in related species. Theoretical and Applied Genetics, 1998, 97(8): 1269-1278. doi: 10.1007/s001220051019.
doi: 10.1007/s001220051019 |
[15] | KWON S J, LEE G A, KWACK Y B, LEE H S, MA K H. Development of 34 new microsatellite markers from Actinidia arguta: Intra- and interspecies genetic analysis. Plant Breeding & Biotechnology, 2013, 1(2): 137-147. |
[16] |
LIU C Y, ZHANG Q, YAO X H, ZHONG C H, YAN C L, HUANG H W. Characterization of genome-wide simple sequence repeats and application in interspecific genetic map integration in kiwifruit. Tree Genetics & Genomes, 2016, 12(2): 21. doi: 10.1007/s11295-016- 0982-2.
doi: 10.1007/s11295-016- 0982-2 |
[17] |
廖娇, 黄春辉, 辜青青, 曲雪艳, 徐小彪. 猕猴桃EST-SSR引物筛选及通用性分析. 果树学报, 2011, 28(6): 1111-1116. doi: 10.13925/j. cnki.gsxb.2011.06.039.
doi: 10.13925/j. cnki.gsxb.2011.06.039 |
LIAO J, HUANG C H, GU Q Q, QU X Y, XU X B. Mining and transferability analysis of EST-SSR primers in kiwifruit (Actinidia spp.). Journal of Fruit Science, 2011, 28(6): 1111-1116. doi: 10.13925/ j.cnki.gsxb.2011.06.039. (in Chinese)
doi: 10.13925/j. cnki.gsxb.2011.06.039 |
|
[18] |
MAN Y, WANG Y, ZHANG L, LI Z, QIN R, JIANG Z, SUN X, LIU C. Development of microsatellite markers in Actinidia arguta (Actinidiaceae) based on the NCBI data platform. American Journal of Botany, 2011, 98(11): e310-e315. doi: 10.3732/ajb.1100182.
doi: 10.3732/ajb |
[19] |
SUN H Y, WANG J H, CHEN L, XU J, LI Y D. Development and validation of polymorphic EST-SSR markers for genetic diversity analysis in Actinidia arguta. Fruits, 2019, 74(1): 25-37.
doi: 10.17660/th2019/74.1.4 |
[20] |
KORKOVELOS A E, MAVROMATIS A G, HUANG W G, HAGIDIMITRIOU M, GIAKOUNDIS A, GOULAS C K. Effectiveness of SSR molecular markers in evaluating the phylogenetic relationships among eight Actinidia species. Scientia Horticulturae, 2008, 116(3): 305-310.
doi: 10.1016/j.scienta.2008.01.011 |
[21] |
汤佳乐, 吴寒, 郎彬彬, 曲雪艳, 黄春辉, 徐小彪. 野生毛花猕猴桃叶片和果实AsA含量的SSR标记关联分析. 园艺学报, 2014, 41(5): 833-840. doi: 10.16420/j.issn.0513-353x.2014.05.008.
doi: 10.16420/j.issn.0513-353x.2014.05.008 |
TANG J L, WU H, LANG B B, QU X Y, HUANG C H, XU X B. Association analysis on leaf and fruit AsA content and SSR markers of wild Actinidia eriantha. Acta Horticulturae Sinica, 2014, 41(5): 833-840. doi: 10.16420/j.issn.0513-353x.2014.05.008. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014.05.008 |
|
[22] |
LAI J J, LI Z Z, MAN Y P, LEI R, WANG Y C. Genetic diversity of five wild Actinidia arguta populations native to China as revealed by SSR markers. Scientia Horticulturae, 2015, 191: 101-107.
doi: 10.1016/j.scienta.2015.05.004 |
[23] |
王丹丹, 张彦文. 软枣猕猴桃栽培品种DNA指纹图谱的构建及遗传多样性分析. 东北师大学报(自然科学版), 2017, 49(3): 104-111. doi: 10.16163/j.cnki.22-1123/n.2017.03.022.
doi: 10.16163/j.cnki.22-1123/n.2017.03.022 |
WANG D D, ZHANG Y W. Establishment of DNA fingerprinting and analysis of genetic diversity among Actinidia arguta cultivars. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(3): 104-111. doi: 10.16163/j.cnki.22-1123/n.2017.03.022. (in Chinese)
doi: 10.16163/j.cnki.22-1123/n.2017.03.022 |
|
[24] |
WANG Y C, LIAO L, LI Z Z. Genetic differentiation of Actinidia chinensis and analysis of gene flow barriers in the Qinling Mountains, the species’ northern distribution boundary. Genetic Resources and Crop Evolution, 2018, 65(3): 881-895. doi: 10.1007/s10722-017-0578-1.
doi: 10.1007/s10722-017-0578-1 |
[25] |
LIAO G L, LI Z Y, HUANG C H, ZHONG M, TAO J J, QU X Y, CHEN L, XU X B. Genetic diversity of inner quality and SSR association analysis of wild kiwifruit (Actinidia eriantha). Scientia Horticulturae, 2019, 248: 241-247.
doi: 10.1016/j.scienta.2019.01.021 |
[26] |
FRASER L G, TSANG G K, DATSON P M, DE SILVA H N, HARVEY C F, GILL G P, CROWHURST R N, MCNEILAGE M A. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics, 2009, 10: 102. doi: 10.1186/1471-2164-10-102.
doi: 10.1186/1471-2164-10-102 |
[27] |
廖光联, 刘青, 贾东峰, 黄春辉, 钟敏, 徐小彪. 基于CiteSpace的猕猴桃研究热点与趋势分析. 中国果树, 2020(3): 116-120. doi: 10.16626/j.cnki.issn1000-8047.2020.03.030.
doi: 10.16626/j.cnki.issn1000-8047.2020.03.030 |
LIAO G L, LIU Q, JIA D F, HUANG C H, ZHONG M, XU X B. Research focus and development process of kiwifruit based on CiteSpace. China Fruits, 2020(3): 116-120. doi: 10.16626/j.cnki.issn1000-8047.2020.03.030. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2020.03.030 |
|
[28] |
钟彩虹, 黄文俊, 李大卫, 张琼, 李黎. 世界猕猴桃产业发展及鲜果贸易动态分析. 中国果树, 2021(7): 101-108. doi: 10.16626/j.cnki. issn1000-8047.2021.07.025.
doi: 10.16626/j.cnki. issn1000-8047.2021.07.025 |
ZHONG C H, HUANG W J, LI D W, ZHANG Q, LI L. Dynamic analysis of global kiwifruit industry development and fresh fruit trade. China Fruits, 2021(7): 101-108. doi: 10.16626/j.cnki.issn1000-8047. 2021.07.025. (in Chinese)
doi: 10.16626/j.cnki. issn1000-8047.2021.07.025 |
|
[29] |
姜志强, 贾东峰, 廖光联, 钟敏, 黄春辉, 陶俊杰, 徐小彪. 中国育成的猕猴桃品种(系)及其系谱分析. 中国南方果树, 2019, 48(6): 142-148. doi: 10.13938/j.issn.1007-1431.20190375.
doi: 10.13938/j.issn.1007-1431.20190375 |
JIANG Z Q, JIA D F, LIAO G L, ZHONG M, HUANG C H, TAO J J, XU X B. Kiwifruit varieties (lines) bred in China and their pedigree analysis. South China Fruits, 2019, 48(6): 142-148. doi: 10.13938/j. issn.1007-1431.20190375. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20190375 |
|
[30] | 张海晶, 温雯, 杨扬, 堵苑苑, 马海鸥, 陈红. 我国猕猴桃植物新品种权保护现状与分析. 北方园艺, 2019(18): 140-145. |
ZHANG H J, WEN W, YANG Y, DU Y Y, MA H O, CHEN H. Current situation and analysis of new plant variety right protection of kiwifruit in China. Northern Horticulture, 2019(18): 140-145. (in Chinese) | |
[31] |
GUO R, LANDIS J B, MOORE M J, P, JIAN S G, YAO X H, WANG H C. Development and application of transcriptome-derived microsatellites in Actinidia eriantha (Actinidiaceae). Frontiers in Plant Science, 2017, 8: 1383. doi: 10.3389/fpls.2017.01383.
doi: 10.3389/fpls.2017.01383 |
[32] | 刘春燕. 猕猴桃种间高密度遗传图谱的构建及果实性状QTLs定位[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2016. |
LIU C Y. Construction of high-density interspecific genetic maps and identification of QTLS for fruits in kiwifruit[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2016. (in Chinese) | |
[33] |
MEIRMANS P G. Genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Molecular Ecology Resources, 2020, 20(4): 1126-1131. doi: 10.1111/1755-0998.13145.
doi: 10.1111/1755-0998.13145 |
[34] |
HUANG K, DUNN D W, RITLAND K, LI B G. POLYGENE: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods in Ecology and Evolution, 2020, 11(3): 448-456.
doi: 10.1111/2041-210X.13338 |
[35] |
PARADIS E, SCHLIEP K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2018, 35(3): 526-528. doi: 10.1093/bioinformatics/bty633.
doi: 10.1093/bioinformatics/bty633 |
[36] |
LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
doi: 10.1093/nar/gkab301 |
[37] |
寇帅, 李政, 李先源, 眭顺照, 李名扬, 李志能. 蕙兰SSR引物开发及渝贵川地区兰属遗传多样性研究. 植物遗传资源学报, 2021, 22(2): 338-348. doi: 10.13430/j.cnki.pngr.20200812001.
doi: 10.13430/j.cnki.pngr.20200812001 |
KOU S, LI Z, LI X Y, SUI S Z, LI M Y, LI Z N. Development of SSR primers in Cymbidium faberi Rolfe and study on genetic diversity of Cymbidium sw. in Chongqing-Guizhou-Sichuan region. Journal of Plant Genetic Resources, 2021, 22(2): 338-348. doi: 10.13430/j.cnki. jpgr.20200812001. (in Chinese)
doi: 10.13430/j.cnki.pngr.20200812001 |
|
[38] |
张田, 李作洲, 刘亚令, 姜正旺, 黄宏文. 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑. 生物多样性, 2007, 15(1): 1-22.
doi: 10.1360/biodiv.060277 |
ZHANG T, LI Z Z, LIU Y L, JIANG Z W, HUANG H W. Genetic diversity, gene introgression and homoplasy in sympatric populations of the genus Actinidia as revealed by chloroplast microsatellite markers. Biodiversity Science, 2007, 15(1): 1-22. (in Chinese)
doi: 10.1360/biodiv.060277 |
|
[39] |
YUE J Y, LIU J C, TANG W, WU Y Q, TANG X F, LI W, YANG Y, WANG L H, HUANG S X, FANG C B, ZHAO K, FEI Z J, LIU Y S, ZHENG Y. Kiwifruit Genome Database (KGD): A comprehensive resource for kiwifruit genomics. Horticulture Research, 2020, 7: 117. doi: 10.1038/s41438-020-0338-9.
doi: 10.1038/s41438-020-0338-9 |
[40] | 陈昌龙, 董岩, 田宇, 石妙涵, 葛秀秀, 谢华. 芹菜转录组数据SSR标记的开发及其遗传多样性分析. 农业生物技术学报, 2020, 28(4): 616-628. |
CHEN C L, DONG Y, TIAN Y, SHI M H, GE X X, XIE H. Transcriptomic SSR marker development and genetic diversity analysis in celery(Apium graveolens). Journal of Agricultural Biotechnology, 2020, 28(4): 616-628. (in Chinese) | |
[41] | 李作洲. 猕猴桃属植物的分子系统学研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2006. |
LI Z Z. Molecular phylogeny of the genus Actinidia based on nuclear DNA genetic markers and cytoplasm DNA sequence analysis[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2006. (in Chinese) | |
[42] | LI J Q, LI X W, SOEJARTO D D. Actinidiaceae//WU Z Y, RAVEN P H, HONG D Y. Flora of China. Vol.12. Beijing: Science Press. & St. Louis, Missouri: Missouri Botanical Gardens, 2007: 334-360. |
[43] |
TESTOLIN R, FERGUSON A R. Isozyme Polymorphism in the Genus Actinidia and the origin of the kiwifruit genome. Systematic Botany, 1997, 22(4): 685.
doi: 10.2307/2419435 |
[44] |
CIPRIANI G, TESTOLIN R, GARDNER R. Restriction-site variation of PCR-amplified chloroplast DNA regions and its implication for the evolution and taxonomy of Actinidia. Theoretical and Applied Genetics, 1998, 96(3/4): 389-396. doi: 10.1007/s001220050754.
doi: 10.1007/s001220050754 |
[45] |
HUANG H W, LI Z Z, LI J Q, KUBISIAK T L, LAYNE D R. Phylogenetic relationships in Actinidia as revealed by RAPD analysis. Journal of the American Society for Horticultural Science, 2002, 127(5): 759-766.
doi: 10.21273/JASHS.127.5.759 |
[46] | LI Z Z, HUANG H W, JIANG Z W, LI J Q, KUBISIAK T L. Phylogenetic relationships in Actinidia as revealed by RAPDs and PCR-RFLPs of mtDNA. Acta Horticulturae, 2003, 610: 387-396. |
[47] |
CHAT J, JÁUREGUI B, PETIT R J, NADOT S. Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their maternal and paternal phylogenies. American Journal of Botany, 2004, 91(5): 736-747. doi: 10.3732/ajb.91.5.736.
doi: 10.3732/ajb.91.5.736 |
[48] | 包维红. 基于叶绿体基因组的猕猴桃科分子系统学研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2018. |
BAO W H. Phylogenetic Study of Actinidiaceae based on chloroplast genomes[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2018. (in Chinese) | |
[49] |
LIU Y F, LI D W, ZHANG Q, SONG C, ZHONG C H, ZHANG X D, WANG Y, YAO X H, WANG Z P, ZENG S H, WANG Y, GUO Y T, WANG S B, LI X W, LI L, LIU C Y, MCCANN H C, HE W M, NIU Y, CHEN M, DU L W, GONG J J, DATSON P M, HILARIO E, HUANG H W. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. The New Phytologist, 2017, 215(2): 877-890. doi: 10.1111/nph.14607.
doi: 10.1111/nph.14607 |
[1] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[2] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[3] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 2022, 55(3): 491-502. |
[4] | 张晋龙,赵志博,刘巍,黄丽丽. 猕猴桃细菌性溃疡病菌T3SS关键效应蛋白基因致病功能[J]. 中国农业科学, 2022, 55(3): 503-513. |
[5] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[6] | 谢丽雪,张小艳,张立杰,郑姗,李韬. 侵染西番莲的东亚西番莲病毒全基因组序列特征及TC-RT-PCR检测技术[J]. 中国农业科学, 2022, 55(22): 4408-4418. |
[7] | 朱延松,张亚飞,程莉,杨胜男,赵婉彤,江东. 利用Target SSR-seq技术鉴定60份柑橘种质资源[J]. 中国农业科学, 2022, 55(22): 4458-4472. |
[8] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
[9] | 裴悦宏,李凤巍,刘维娜,温玉霞,朱鑫,田绍锐,樊光进,马小舟,孙现超. 本氏烟半胱氨酸蛋白酶基因家族特征及其在TMV侵染中的功能[J]. 中国农业科学, 2022, 55(21): 4196-4210. |
[10] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[11] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[12] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[13] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[14] | 万映伶,朱梦婷,刘爱青,金亦佳,刘燕. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
[15] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
|