中国农业科学 ›› 2021, Vol. 54 ›› Issue (24): 5302-5315.doi: 10.3864/j.issn.0578-1752.2021.24.012
唐修君1,2(),樊艳凤1(),贾晓旭1,葛庆联1,陆俊贤1,唐梦君1,韩威1,高玉时1,*()
收稿日期:
2020-08-14
接受日期:
2021-10-15
出版日期:
2021-12-16
发布日期:
2021-12-28
通讯作者:
高玉时
作者简介:
唐修君,E-mail: 基金资助:
TANG XiuJun1,2(),FAN YanFeng1(),JIA XiaoXu1,GE QingLian1,LU JunXian1,TANG MengJun1,HAN Wei1,GAO YuShi1,*()
Received:
2020-08-14
Accepted:
2021-10-15
Online:
2021-12-16
Published:
2021-12-28
Contact:
YuShi GAO
摘要:
【目的】探讨不同生长速度鸡品种(配套系)线粒体DNA D-loop区全序列遗传多样性和起源特性,为肉鸡品种选育和溯源提供理论依据。【方法】以不同生长速度的8个黄羽肉鸡配套系(中快速型5个、慢速型3个)、2个地方鸡种(固始鸡、藏鸡)、2个引进鸡种(隐性白羽鸡、安卡鸡)、1个白羽肉鸡(罗斯308)、817杂交肉鸡以及1个高产蛋鸡配套系(大午褐壳蛋鸡)共计15个鸡种为研究对象,采集血液提取DNA后进行PCR扩增,对15个鸡种共683个个体mtDNA D-loop区全序列进行测序,使用DnaSP 5.10软件分析各个鸡种遗传多样性和单倍型特点,使用MEGA 4.0软件计算种间遗传距离,构建不同单倍型与红色原鸡之间NJ系统发育树,分析起源和亲缘关系。【结果】15个鸡种线粒体D-loop区全序列大小为1 231—1 232bp,序列长度为1 231 bp的个体在859 bp处存在C碱基缺失。683个个体共检测到45个变异位点,组合为53个单倍型,可以分为A、B、C和E共4个单倍型群,其中中快速型肉鸡、817杂交肉鸡以及高产蛋鸡均是E单倍型为优势单倍型(≥48.89%);慢速型黄羽肉鸡中鸿光黑鸡优势单倍型为B单倍型,京海黄鸡优势单倍型为A单倍型,雪山鸡4种单倍型相对均衡,3个慢速型黄羽肉鸡配套系E单倍型比例≤38.46%;地方鸡种中固始鸡的单倍型为A和C型,藏鸡的单倍型为A和B型。15个鸡种单倍型多样度(Hd)分布在0.496—0.853,核苷酸多样度(Pi)分布在0.00146—0.00673,遗传多样性相对丰富的品种(配套系)是新兴矮脚黄鸡、雪山鸡、京海黄鸡和罗斯308;遗传多样性程度相对较低的品种(配套系)是藏鸡、高产蛋鸡、安卡鸡、新兴麻鸡4号和墟岗黄鸡1号。15个鸡种Kiumura双参数距离范围为0.0016—0.0113,其中罗斯308种内遗传距离最大,而817杂交肉鸡和高产蛋鸡的种内遗传距离最小;种间遗传距离最大为高产蛋鸡与藏鸡之间,最小为高产蛋鸡与817杂交肉鸡之间;中快速型黄羽肉鸡配套系相互之间遗传距离相对较小,而与慢速型黄羽肉鸡配套系以及地方鸡种之间遗传距离相对较大;京海黄鸡和鸿光黑鸡均是与藏鸡遗传距离最小。聚类分析显示,A、B单倍型群与红色原鸡滇南亚种交叉聚为一枝;E单倍型与红色原鸡印度亚种交叉聚为一枝;C单倍型群与红色原鸡印度亚种、滇南亚种、指名亚种以及印尼亚种交叉聚为一枝。【结论】不同生长速度鸡种之间线粒体D-loop区遗传多样性程度差异较大;E单倍型与肉鸡生长速度具有较强的相关性,中快速型群体均以E单倍型为优势单倍型,而慢速型群体E单倍型比例均低于40%;我国家鸡群体具有多个红色原鸡母系起源,显示其在中性选择下被驯化。研究结果为肉鸡品种选育和溯源以及资源化开发利用提供了理论依据。
唐修君,樊艳凤,贾晓旭,葛庆联,陆俊贤,唐梦君,韩威,高玉时. 基于线粒体DNA D-loop区的肉鸡品种遗传多样性和起源分析[J]. 中国农业科学, 2021, 54(24): 5302-5315.
TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region[J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
表1
15个鸡种来源和采样数"
品种 Breed | 文中简称 Abbreviation | 来源 Source | 采样数 Sampling number |
---|---|---|---|
墟岗黄鸡1号 Xugang yellow chicken No.1 | XGH | 广东省鹤山市墟岗黄畜牧有限公司 Guangdong Heshan Xuganghuang Animal Husbandry Co. LTD | 45 |
新广铁脚麻鸡 Xinguang tiejiaoma chicken | XGT | 佛山市高明区新广农牧有限公司 Foshan Gaoming Xinguang Agriculture and Animal Husbandry Co. LTD | 38 |
新兴麻鸡4号 Xinxing partridge chicken No.4 | XXM | 广东温氏南方家禽育种有限公司 Guangdong Wenshi South Poultry Breeding Co. LTD | 55 |
良凤花鸡 Liangfeng hua chicken | LFH | 广西南宁市良凤农牧有限责任公司 Guangxi Nanning Liangfeng Agriculture and Animal Husbandry Co. LTD | 53 |
新兴矮脚黄鸡 Xinxing dwarf yellow chicken | XXA | 广东温氏食品集团有限公司 Guangdong Wens Food Group Co. LTD | 46 |
雪山鸡 Xueshan chicken | XS | 江苏立华牧业股份有限公司 Jiangsu Lihua Animal Husbandry Co. LTD | 39 |
京海黄鸡 Jinghai yellow chicken | JHH | 江苏京海禽业集团有限公司 Jiangsu Jinghai Poultry Industry Group Co. LTD | 40 |
鸿光黑鸡 Hongguang black chicken | HGH | 广西鸿光农牧有限公司 Guangxi Hongguang Agriculture and Animal Husbandry Co. LTD | 77 |
固始鸡 Gushi chicken | GS | 国家级地方鸡种基因库(江苏) National Local Chicken Gene Bank (Jiangsu) | 73 |
藏鸡 Tibetan chicken | Z | 国家级地方鸡种基因库(江苏) National Local Chicken Gene Bank (Jiangsu) | 38 |
隐性白羽鸡 Recessive White | YXB | 国家级地方鸡种基因库(江苏) National Local Chicken Gene Bank (Jiangsu) | 45 |
安卡鸡 Anka chicken | AK | 国家级地方鸡种基因库(江苏) National Local Chicken Gene Bank (Jiangsu) | 29 |
罗斯308 Rose 308 | LS | 国家家禽生产性能测定站 National Poultry production performance testing station | 34 |
817杂交肉鸡 817 hybrid broiler | 817 | 国家家禽生产性能测定站 National Poultry production performance testing station | 32 |
高产蛋鸡 High-yielding layer | E | 国家家禽生产性能测定站 National Poultry production performance testing station | 39 |
表2
15个鸡种线粒体D-loop区单倍型数量分布"
单倍型 Haplotype | 突变位点 Variable sites (bp) | 总计 Total | 单倍型类别 Haplotype category | 品种 (个数) Breeds (number) |
---|---|---|---|---|
111 | ||||
1112222222 2222222222 2333333333 3333344677 89022 | ||||
3691112233 4444555688 9011234566 6669914819 42511 | ||||
3791272589 0236269113 6605102401 2371976612 60245 | ||||
D-NC007237 TTTAGTACGA CGCCACATGA CCTCGCGTTA CCTCGCCGGG CCTCG | ||||
Hap_1..C..C............A..T....A.........T......T. | 82 | E1 | XGH(6), XGT(11), XXM(8), LFH(17), XXA(3), XS(9), JHH(3),AK(10),LS(15) | |
Hap_2.....C............A..T....A.........T......T. | 159 | E2 | XGH(30), XGT(14),XXM(36),LFH(14), XXA(13), XS(6),YXB(19), AK(16), LS(1), 817(6), E(4) | |
Hap_3...........A.....C...T.........TC............ | 85 | C1 | XGH(5), XGT(12), XXM(5), LFH(2), XXA(7), XS(11),GS(28),YXB(14), LS(1) | |
Hap_4....A.......TT.T.CA..TCT..A..........A.A....A | 27 | B1 | XGH(4), LFH(4), XXA(5), XS(4), YXB(2), AK(1), LS(7) | |
Hap_5....A.......TT.TGCA...CT..A.................A | 1 | B2 | XGT(1) | |
Hap_6.C.....T.G..T..T.CA..TC...A.................. | 13 | A1 | XXM(3), LFH(2),XXA(7),AK(1) | |
Hap_7.....C............A..T....A.........TA.....T. | 5 | E3 | XXM(3),YXB(2) | |
Hap_8..C..C............A..T....A........TT......T. | 4 | E4 | LFH(4) | |
Hap_9.....C...........CA..T...TA.........T......T. | 6 | E5 | LFH(6) | |
Hap_10....A.......TT.T.CA..TCT..A..........A.A...T. | 4 | B3 | LFH(4) | |
Hap_11..C..C............A..T....A.........T..A...T. | 6 | E6 | XXA(6) | |
Hap_12.C.....T....T..T.CA..TC...A.................. | 52 | A2 | XXA(4),XS(9),JHH(2),GS(37) | |
Hap_13.....C............A..T...TA.........T......T. | 7 | E7 | XXA(1),817(6) | |
Hap_14 CC.....T....T..T.CA..TC...A.................. | 16 | A3 | JHH(3),Z(13) | |
Hap_15....A.......TTTT.CA..TCT..A.................A | 3 | B4 | JHH(3) | |
单倍型 Haplotype | 突变位点 Variable sites(bp) | 总计 Total | 单倍型类别 Haplotype category | 品种 (个数) Breeds (number) |
Hap_16.C.....T....T..T.CA..TC...A..........A....... | 13 | A4 | JHH(13) | |
Hap_17....A.......TT.T.CA..T.T..A..........A......A | 2 | B5 | JHH(2) | |
Hap_18....A.......TT.T.CA..TCT..A............A....A | 7 | B6 | JHH(7) | |
Hap_19...........A.........T.........TC............ | 3 | C2 | JHH(3) | |
Hap_20.C..A..T....T..T.CA..TC...A.................. | 2 | A5 | JHH(2) | |
Hap_21.......... TA.....C...T.........TC............ | 2 | C3 | JHH(2) | |
Hap_22....A.......TT.T.CA..TCT..A............A T...A | 20 | B7 | HGH(20) | |
Hap_23....A.......TT.T.CA..TCT..A............. T...A | 23 | B8 | HGH(23) | |
Hap_24....A.......TT.T.CA..TCT..A..........A.. T...A | 1 | B9 | HGH(1) | |
Hap_25.C.....T....T..T.CA..TC...A... T......... T.... | 4 | A6 | HGH(4) | |
Hap_26...........A.....C...T.........TC....... T.... | 7 | C4 | HGH(3),GS(4) | |
Hap_27....A.......TT.T.CAG.TCT..A............. T...A | 2 | B10 | HGH(2) | |
Hap_28....A.......TT.TGCA...CT..A............A T...A | 2 | B11 | HGH(2) | |
Hap_29....A.......TT.T.CA. TTCT..A............A T...A | 3 | B12 | HGH(3) | |
Hap_30....A.......TT.T.CA..TCT..A.C..........A T...A | 2 | B13 | HGH(2) | |
Hap_31....A........T.T.CA..TCT..A............A T...A | 1 | B14 | HGH(1) | |
Hap_32.....C............A..T....AC........T... T..T. | 1 | E8 | HGH(1) | |
Hap_33....A.......TT.T.CA..TCT..A..........A.A T...A | 3 | B15 | HGH(3) | |
Hap_34...........A.....C...T.........TC....A.. T.... | 2 | C5 | HGH(2) | |
Hap_35....A.......TT.T.CA..TCT..A...........AA T...A | 1 | B16 | HGH(1) | |
Hap_36.....C............A..T....A.........T... T..T. | 4 | E9 | HGH(4) | |
Hap_37.C.....TA...T..T.CA..TC...A..........A.. T.... | 1 | A7 | HGH(1) | |
Hap_38....A.......TT.T.CA..TCT..A......T...... T...A | 1 | B17 | HGH(1) | |
Hap_39.....C............A..T....A......A..T... T..T. | 1 | E10 | HGH(1) | |
Hap_40.....C............A..T....A.........TA.. T..T. | 2 | E11 | HGH(2) | |
Hap_41...G.......A.....C...T..A......TC............ | 1 | C6 | GS(1) | |
Hap_42...........A.....C...T.........TC........T... | 2 | C7 | GS(1),AK(1) | |
Hap_43.C.....T....T..T.CA..TC...A..T............... | 8 | A8 | GS(2),YXB(6) | |
Hap_44....A.......TT.T.CA. TTCT..A............A....A | 24 | B18 | Z(24) | |
Hap_45....A.......TT.T.CA..TCT..A.................A | 1 | B19 | Z(1) | |
Hap_46.C.....T....T..T.CA..TC...A................T. | 1 | A9 | YXB(1) | |
Hap_47.....C............A..T....A.........T........ | 1 | E12 | YXB(1) | |
Hap_48.C.....T.G..T..T.CA..TC...A...............C.. | 7 | A10 | LS(7) | |
Hap_49....A.......TT.T.CA..TCT..A.......A..A.A....A | 1 | B20 | LS(1) | |
Hap_50..C..C............A..T....A.......A.T......T. | 1 | E13 | LS(1) | |
Hap_51.C.....T.G..T..T.CA..TC...A.......A.......C.. | 1 | A11 | LS(1) | |
Hap_52.....C............A..T..............TA.....T. | 24 | E14 | 817(13),E(11) | |
Hap_53.....CG...........A..T...TA.........T......T. | 31 | E15 | 817(7),E(24) |
表3
不同鸡种D-Loop区全序列单倍型汇总"
鸡种 Breed | 总数 Total | 单倍型个数Number of haplotypes (%) | |||
---|---|---|---|---|---|
A | B | C | E | ||
XGH | 45 | — | 4(8.89%) | 5(11.11%) | 36(80.00%) |
XGT | 38 | — | 1(2.63%) | 12(31.58%) | 25(65.79%) |
XXM | 55 | 3(5.45%) | — | 5(9.09%) | 47(85.45%) |
LFH | 53 | 2(3.77%) | 8(15.09%) | 2(3.77%) | 41(77.36%) |
XXA | 46 | 11(23.91%) | 5(10.87%) | 7(15.22%) | 23(50.00%) |
XS | 39 | 9(23.08%) | 4(10.26%) | 11(28.21%) | 15(38.46%) |
JHH | 40 | 20(50.00%) | 12(30.00%) | 5(12.50%) | 3(7.50%) |
HGH | 77 | 5(6.49%) | 59(76.62%) | 5(6.49%) | 8(10.39%) |
GS | 73 | 39(53.42%) | — | 34(46.58%) | — |
Z | 38 | 13(34.21%) | 25(65.79%) | — | — |
YXB | 45 | 7(15.56%) | 2(4.44%) | 14(31.11%) | 22(48.89%) |
AK | 29 | 1(3.45%) | 1(3.45%) | 1(3.45%) | 26(89.66%) |
LS | 34 | 8(23.53%) | 8(23.53%) | 1(2.94%) | 17(50.00%) |
817 | 32 | — | — | — | 32(100%) |
E | 39 | — | — | — | 39(100%) |
表4
15个鸡种D-Loop区序列变异位点数、平均核苷酸差异和核苷酸多样度"
品种 Breed | 变异位点数 No. of variable sites | 单倍型数 No. of haplotype | 平均核苷酸差异 Average number of nucleotide differences (K) | 核苷酸多样度 Nucleotide diversity (Pi) | 单倍型多样度 Haplotype diversity (Hd) |
---|---|---|---|---|---|
XGH | 19 | 4 | 4.0465 | 0.00329±0.00078 | 0.529±0.078 |
XGT | 19 | 4 | 4.9644 | 0.00403±0.00053 | 0.698±0.026 |
XXM | 17 | 5 | 2.8431 | 0.00231±0.00057 | 0.546±0.072 |
LFH | 24 | 8 | 5.2438 | 0.00426±0.00066 | 0.810±0.032 |
XXA | 23 | 8 | 7.4899 | 0.00608±0.00043 | 0.851±0.026 |
XS | 21 | 5 | 7.6167 | 0.00619±0.00036 | 0.800±0.024 |
JHH | 24 | 10 | 6.9372 | 0.00564±0.00057 | 0.853±0.039 |
HGH | 30 | 19 | 5.1490 | 0.00418±0.00056 | 0.840±0.029 |
GS | 15 | 6 | 5.2870 | 0.00429±0.00013 | 0.600±0.034 |
Z | 9 | 3 | 4.1920 | 0.00340±0.00036 | 0.496±0.054 |
YXB | 21 | 7 | 6.5920 | 0.00535±0.00045 | 0.718±0.043 |
AK | 23 | 5 | 2.6700 | 0.00217±0.00088 | 0.594±0.065 |
LS308 | 24 | 8 | 8.2820 | 0.00673±0.00047 | 0.738±0.055 |
817 | 4 | 4 | 1.8468 | 0.00150±0.00009 | 0.740±0.041 |
E | 4 | 3 | 1.8030 | 0.00146±0.00016 | 0.545±0.063 |
总Total | 45 | 53 | 7.9552 | 0.00646±0.00011 | 0.901±0.006 |
表5
基于Kimura双参数模型计算的15个鸡种品种内和品种间平均遗传距离"
品种 Breed | 种内 Within breeds | XGH | XGT | XXM | LFH | XXA | XS | JHH | HGH | GS | Z | YXB | AK | LS308 | 817 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XGH | 0.0033 | — | |||||||||||||
XGT | 0.0041 | 0.0039 | — | ||||||||||||
XXM | 0.0023 | 0.0028 | 0.0035 | — | |||||||||||
LFH | 0.0043 | 0.0039 | 0.0046 | 0.0035 | — | ||||||||||
XXA | 0.0061 | 0.0052 | 0.0056 | 0.0049 | 0.0056 | — | |||||||||
XS | 0.0062 | 0.0056 | 0.0056 | 0.0054 | 0.0060 | 0.0062 | — | ||||||||
JHH | 0.0057 | 0.0079 | 0.0082 | 0.0079 | 0.0079 | 0.0071 | 0.0071 | — | |||||||
HGH | 0.0042 | 0.0091 | 0.0098 | 0.0095 | 0.0090 | 0.0086 | 0.0086 | 0.0068 | — | ||||||
GS | 0.0043 | 0.0074 | 0.0068 | 0.0072 | 0.0079 | 0.0067 | 0.0061 | 0.0061 | 0.0083 | — | |||||
Z | 0.0034 | 0.0094 | 0.0101 | 0.0098 | 0.0092 | 0.0083 | 0.0084 | 0.0058 | 0.0053 | 0.0075 | — | ||||
YXB | 0.0054 | 0.0048 | 0.0049 | 0.0045 | 0.0055 | 0.0059 | 0.0058 | 0.0074 | 0.0091 | 0.0062 | 0.0091 | — | |||
AK | 0.0022 | 0.0028 | 0.0036 | 0.0023 | 0.0033 | 0.0050 | 0.0055 | 0.0080 | 0.0094 | 0.0076 | 0.0098 | 0.0047 | — | ||
LS308 | 0.0068 | 0.0060 | 0.0066 | 0.0058 | 0.0061 | 0.0066 | 0.0069 | 0.0073 | 0.0083 | 0.0077 | 0.0080 | 0.0069 | 0.0056 | — | |
817 | 0.0015 | 0.0029 | 0.0038 | 0.0024 | 0.0036 | 0.0054 | 0.0060 | 0.0088 | 0.0104 | 0.0083 | 0.0110 | 0.0050 | 0.0023 | 0.0063 | — |
E | 0.0015 | 0.0032 | 0.0042 | 0.0027 | 0.0039 | 0.0058 | 0.0064 | 0.0092 | 0.0107 | 0.0087 | 0.0113 | 0.0053 | 0.0026 | 0.0067 | 0.0016 |
[2] |
ARMSTRONG E, IRIARTE A, MARTINEZ A M, FEIJOO M, VEGA-PLA J L, DELGADO J V, POSTIGLIONI A. Genetic diversity analysis of the Uruguayan Creole cattle breed using microsatellites and mtDNA markers. Genetics and molecular research, 2013, 12(2):1119-1131.
doi: 10.4238/2013.April.10.7 |
[3] |
ASATO Y, OSHIRO M, MYINT C K, YAMAMOTO Y I, KATO H, MARCO J D, MIMORI T, GOMEZ E A L, HASHIGUCHI Y, UEZATO H. Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Experimental Parasitology, 2009, 121(4):352-361. doi: 10.1016/j.exppara.2008.12.013
doi: 10.1016/j.exppara.2008.12.013 |
[4] | 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究. 遗传, 2014(9):912-920. |
LI X J, HUANG Y, LEI F M. Comparative and phylogenomic analyses on mitochondrial genomes of Arborophila species. Hereditas, 2014(9):912-920.(in Chinese) | |
[5] |
MALTSEV A N, STAKHEEV V V, BOGDANOV A S, FOMINA E S, KOTENKOVA E V. Phylogenetic relationships of intraspecific forms of the house mouse Mus musculus: Analysis of variability of the control region (D-loop) of mitochondrial DNA. Doklady Biological Sciences, 2015, 465(1):285-288.
doi: 10.1134/S0012496615060058 |
[6] |
TAKASU M, ISHIHARA N, TOZAKI T, KAKOI H, MAEDA M, MUKOYAMA H. Genetic diversity of maternal lineage in the endangered kiso horse based on polymorphism of the mitochondrial DNA D-loop region. Journal of Veterinary Medical Science, 2014, 76(11):1451-1456.
doi: 10.1292/jvms.14-0231 |
[7] | 张涛, 路宏朝. 宁强矮马线粒体DNA D-loop区的遗传多样性. 中国农业科学, 2012, 45(8):1587-1594. |
ZHANG T, LU H Z. Genetic diversity of mitochondrial DNA D-loop sequences in Ningqiang pony. Scientia Agricultura Sinica, 2012, 45(8): | |
[8] | 齐国强, 昝林森, 张桂香, 王志刚, 王均辉, 韩旭. 中国部分地方水牛品种mtDNA D-loop区遗传多样性与起源研究. 畜牧兽医学报, 2008(1):7-11. |
QI G Q, ZAN L S, ZHANG G X, WANG Z G, WANG J H, HAN X. Mitochondrial DNA D-loop genetic diversity and origin of some Chinese domestic buffalo breeds. Chinese Journal of Animal and Veterinary Sciences, 2008(1):7-11. (in Chinese) | |
[9] |
武艳平, 关伟军, 赵倩君, 何晓红, 浦亚斌, 霍俊宏, 敖红, 李奎, 马月辉. 山羊线粒体DNA D-loop区部分序列变异位点分析. 畜牧兽医学报, 2008, 39(8):1137-1141. doi: 10.3321/j.issn:0366-6964.2008.08.023.
doi: 10.3321/j.issn:0366-6964.2008.08.023 |
WU Y P, GUAN W J, ZHAO Q J, HE X H, PU Y B, HUO J H, AO H, LI K, MA Y H. Analysis on partial sequence of mitochondrial DNA D-loop region variation position of goat. Acta Veterinaria et Zootechnica Sinica, 2008, 39(8):1137-1141. doi: 10.3321/j.issn:0366-6964.2008.08.023. (in Chinese)
doi: 10.3321/j.issn:0366-6964.2008.08.023 |
|
[1] | 赵华, 范梅华. 活鸡向冰鲜鸡消费转型亟需解决的六大问题. 中国畜牧杂志, 2015(16):8-10, 14. |
ZHAO H, FAN M H. Six problems need to solve during the consumption of chilled chicken replacing live chicken. Chinese Journal of Animal Science, 2015(16):8-10, 14. (in Chinese) | |
[10] | 郑立, 刘延鑫, 赵绪永, 靳双星, 邓红雨, 刘太宇. 河南3个驴种mtDNA D-loop区序列多态性及起源进化分析. 西北农林科技大学学报(自然科学版), 2011(4):29-34. |
ZHENG L, LIU Y X, ZHAO X Y, JIN S X, DENG H Y, LIU T Y. Analysis of phylogenetic relationship and genetic diversity of mtDNA D-loop in three Henan donkey breeds. Journal of Northwest A & F University (Natural Science Edition), 2011(4):29-34. (in Chinese) | |
[11] |
LEE J C, TSAI L C, LIAO S P, LINACRE A, HSIEH H M. Evaluation of the polymorphic D-loop of Columba livia in forensic applications. Electrophoresis, 2010, 31(23/24):3889-3894. doi: 10.1002/elps.201000414.
doi: 10.1002/elps.201000414 |
[12] | 李慧芳, 朱文奇, 杨宁, 宋卫涛, 王继文, 徐文娟, 王强, 陈宽维. 家鸭、媒鸭和野鸭mtDNA D-loop区的遗传变异. 畜牧兽医学报, 2011, 42(9):1213-1219. |
LI H F, ZHU W Q, YANG N, SONG W T, WANG J W, XU W J, WANG Q, CHEN K W. The genetic variation of the mtDNA D-loop region in domestic ducks, Mei ducks and wild ducks. Acta Veterinaria et Zootechnica Sinica, 2011, 42(9):1213-1219. (in Chinese) | |
[13] |
周蓉, 李佳琦, 李铀, 刘迺发, 房峰杰, 施丽敏, 王莹. 基于线粒体DNA的大石鸡种群遗传变异. 生物多样性, 2012, 20(4):451-459. doi: 10.3724/SP.J.1003.2012.09221.
doi: 10.3724/SP.J.1003.2012.09221 |
ZHOU R, LI J Q, LI Y, LIU N F, FANG F J, SHI L M, WANG Y. Genetic variation in rusty-necklaced partridge (Alectoris magna) detected by mitochondrial DNA. Biodiversity Science, 2012, 20(4):451-459. doi: 10.3724/SP.J.1003.2012.09221. (in Chinese)
doi: 10.3724/SP.J.1003.2012.09221 |
|
[14] | 赵倩君, 关伟军, 郭军, 乔海云, 何晓红, 浦亚斌, 傅宝玲, 敖红, 李奎, 马月辉. 中国7个绵羊品种mtDNA D-loop区序列的系统发育与起源研究. 畜牧兽医学报, 2008(4):417-422. |
ZHAO Q J, GUAN W J, GUO J, QIAO H Y, HE X H, PU Y B, FU B L, AO H, LI K, MA Y H. Origin and phylogenetics of seven Chinese sheep breeds based on D-loop sequence. Chinese Journal of Animal and Veterinary Sciences, 2008(4):417-422. (in Chinese) | |
[15] |
高玉时, 贾晓旭, 唐修君, 唐梦君, 樊艳凤, 陆俊贤, 顾荣, 葛庆联, 苏一军. 基于线粒体基因组D-loop区全序列分析安义瓦灰鸡遗传多样性及其起源进化关系. 农业生物技术学报, 2015, 23(7):940-944. doi: 10.3969/j.issn.1674-7968.2015.07.011.
doi: 10.3969/j.issn.1674-7968.2015.07.011 |
GAO Y S, JIA X X, TANG X J, TANG M J, FAN Y F, LU J X, GU R, GE Q L, SU Y J. The genetic diversity and origin analysis of Anyi tile-like chickens (Gallus gallus domestiaus) based on mitochondrial DNAD-loop sequence. Journal of Agricultural Biotechnology, 2015, 23(7):940-944. doi: 10.3969/j.issn.1674-7968.2015.07.011. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2015.07.011 |
|
[16] |
LIU Y P, WU G S, YAO Y G, MIAO Y W, LUIKART G, BAIG M, BEJA-PEREIRA A, DING Z L, PALANICHAMY M G, ZHANG Y P. Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution, 2006, 38(1):12-19.
doi: 10.1016/j.ympev.2005.09.014 |
[17] |
MIAO Y W, PENG M S, WU G S, OUYANG Y N, YANG Z Y, YU N, LIANG J P, PIANCHOU G, BEJA-PEREIRA A, MITRA B, PALANICHAMY M G, BAIG M, CHAUDHURI T K, SHEN Y Y, KONG Q P, MURPHY R W, YAO Y G, ZHANG Y P. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 2013, 110(3):277-282.
doi: 10.1038/hdy.2012.83 |
[18] | 萨姆布鲁克J, 拉塞尔 D W. 分子克隆实验指南: 第三版. 北京: 科学出版社, 2002, 461-512. |
SAMBROOK J, RUSSELL D W. Molecular cloning:a laboratory manual: the third edition. Science Press. Beijing. 2002, 461-512. (in Chinese) | |
[19] |
ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, ROZAS R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics (Oxford, England), 2003, 19(18):2496-2497. doi: 10.1093/bioinformatics/btg359.
doi: 10.1093/bioinformatics/btg359 |
[20] |
TAMURA K, DUDLEY J, NEI M, KUMAR S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8):1596-1599. doi: 10.1093/molbev/msm092.
doi: 10.1093/molbev/msm092 |
[21] |
包文斌, 束婧婷, 王存波, 张红霞, Steffen Weigend, 陈国宏. 中国家鸡和红色原鸡mtDNA控制区遗传多态性及系统进化分析. 畜牧兽医学报, 2008, 39(11):1449-1459. doi: 10.3321/j.issn:0366-6964.2008.11.001.
doi: 10.3321/j.issn:0366-6964.2008.11.001 |
BAO W B, SHU J T, WANG C B, ZHANG H X, WEIGEND S, CHEN G H. Investigation on genetic diversity and systematic evolution in Chinese domestic fowls and red jungle fowls by analyzing the mtDNA control region. Acta Veterinaria et Zootechnica Sinica, 2008, 39(11):1449-1459. doi: 10.3321/j.issn:0366-6964.2008.11.001. (in Chinese)
doi: 10.3321/j.issn:0366-6964.2008.11.001 |
|
[22] |
DANA N, MEGENS H J, CROOIJMANS R P M A, HANOTTE O, MWACHARO J, GROENEN M A M, ARENDONK J A M V. East Asian contributions to Dutch traditional and western commercial chickens inferred from mtDNA analysis. Animal Genetics, 2010, 42, 125-133.
doi: 10.1111/age.2011.42.issue-2 |
[23] |
LYIMO C M, WEIGEND A, MSOFFE P L, HOCKING P M, SIMIANER H, WEIGEND S. Maternal genealogical patterns of chicken breeds sampled in Europe. Animal Genetics, 2015, 46(4):447-451.
doi: 10.1111/age.2015.46.issue-4 |
[24] |
OSMAN S A M, YONEZAWA T, NISHIBORI M. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poultry Science, 2016, 95(6):1248-1256.
doi: 10.3382/ps/pew029 |
[25] |
SMITH M A, WOODLEY N E, JANZEN D H, HALLWACHS W, HEBERT P D. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3657-3662. doi: 10.1073/pnas.0511318103.
doi: 10.1073/pnas.0511318103 |
[26] |
潘建飞, 史兆国, 成述儒, 王川, 赵生国. 甘肃主要马群体遗传多样性及系统发育研究. 农业生物技术学报, 2014, 22(2):210-218. doi: 10.3969/j.issn.1674-7968.2014.02.010.
doi: 10.3969/j.issn.1674-7968.2014.02.010 |
PAN J F, SHI Z G, CHENG S R, WANG C. The study of genetic diversity and phylogenetic evolution in indigenous horses (Equus caballus) of Gansu. Journal of Agricultural Biotechnology, 2014, 22(2):210-218. doi: 10.3969/j.issn.1674-7968.2014.02.010. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2014.02.010 |
|
[27] | 中国畜禽遗传资源志 家禽志. 北京: 中国农业出版社, 2011, 331-333. |
Animal genetic resources in China Poultry. China agriculture press. Beijing. 2011, 331-333. (in Chinese) | |
[28] | FUMIHITO A, MIYAKE T, SUMI S, TAKADA M, OHNO S, KONDO N. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences, USA. 1994, 91, 12505-12509. |
[29] |
KANGINAKUDRU S, METTA M, JAKATI R D, NAGARAJU J. Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evolutionary Biology, 2008, 8:174. doi: 10.1186/1471-2148-8-174.
doi: 10.1186/1471-2148-8-174 |
[30] |
贾晓旭, 唐修君, 樊艳凤, 陆俊贤, 黄胜海, 葛庆联, 高玉时, 韩威. 华东地区地方鸡品种mtDNA控制区遗传多样性. 生物多样性, 2017, 25(5):540-548. doi: 10.17520/biods.2017012.
doi: 10.17520/biods.2017012 |
JIA X X, TANG X J, FAN Y F, LU J X, HUANG S H, GE Q L, GAO Y S, HAN W. Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region. Biodiversity Science, 2017, 25(5):540-548. doi: 10.17520/biods.2017012. (in Chinese)
doi: 10.17520/biods.2017012 |
[1] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[2] | 张亚男,金永燕,庄智威,王爽,夏伟光,阮栋,陈伟,郑春田. 鸡蛋与鸭蛋的蛋壳力学特性、超微结构及蛋壳组分的比较[J]. 中国农业科学, 2022, 55(24): 4957-4968. |
[3] | 屠云洁,姬改革,章明,刘一帆,巨晓军,单艳菊,邹剑敏,李华,陈智武,束婧婷. 鸡Wnt3a的SNPs筛选及其与皮肤毛囊密度性状关联分析[J]. 中国农业科学, 2022, 55(23): 4769-4780. |
[4] | 黄勋和,翁茁先,李威娜,王庆,何丹林,罗威,张细权,杜炳旺. 中国地方品种黄鸡线粒体DNA D-loop遗传多样性研究[J]. 中国农业科学, 2022, 55(22): 4526-4538. |
[5] | 王哲鹏,周雯馨,贺俊锡,虎巧燕,赵家悦. 胆囊收缩素A型受体基因序列变异和表达与略阳乌鸡饲料转化率的关联性研究[J]. 中国农业科学, 2022, 55(22): 4539-4549. |
[6] | 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析[J]. 中国农业科学, 2022, 55(2): 233-247. |
[7] | 郭军,王克华,韩威,窦套存,王星果,胡玉萍,马猛,曲亮. 42日龄如皋黄鸡体重间接遗传效应分析[J]. 中国农业科学, 2022, 55(19): 3854-3861. |
[8] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[9] | 万映伶,朱梦婷,刘爱青,金亦佳,刘燕. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
[10] | 贾雅婷,胡慧慧,翟亚军,赵冰,何坤,潘玉善,胡功政,苑丽. 核蛋白H-NS调控多重耐药鸡大肠埃希菌IncFⅡ质粒接合转移的分子机制[J]. 中国农业科学, 2022, 55(18): 3675-3684. |
[11] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[12] | 王雪洁,邢爽,赵少猛,周莹,厉秀梅,柳清秀,马丹丹,张敏红,冯京海. 热应激对肉鸡回肠菌群的影响因素研究[J]. 中国农业科学, 2022, 55(17): 3450-3460. |
[13] | 王璐伟,沈志军,李贺欢,潘磊,牛良,崔国朝,曾文芳,王志强,鲁振华. 基于SSR荧光标记的79份桃种质遗传多样性分析[J]. 中国农业科学, 2022, 55(15): 3002-3017. |
[14] | 丁鹏,仝月月,刘会超,尹鑫,刘将军,贺喜,宋泽和,张海涵. 黄羽肉鸡胚期卵黄微生物动态变化及对早期肠道微生物定殖的影响[J]. 中国农业科学, 2022, 55(14): 2837-2849. |
[15] | 陈旭,郝雅琼,聂兴华,杨海莹,刘松,王雪峰,曹庆芹,秦岭,邢宇. 板栗总苞和坚果主要性状与SSR标记的关联分析[J]. 中国农业科学, 2022, 55(13): 2613-2628. |
|