中国农业科学 ›› 2021, Vol. 54 ›› Issue (9): 1881-1893.doi: 10.3864/j.issn.0578-1752.2021.09.006
吴云雨1,2(),肖宁1,2,4,余玲1,2,蔡跃1,2,潘存红1,3,李育红1,2,张小祥1,2,黄年生1,2,季红娟1,2,戴正元1,3,李爱宏1,2,3(
)
收稿日期:
2020-07-13
接受日期:
2020-08-24
出版日期:
2021-05-01
发布日期:
2021-05-10
通讯作者:
李爱宏
作者简介:
吴云雨,E-mail:基金资助:
WU YunYu1,2(),XIAO Ning1,2,4,YU Ling1,2,CAI Yue1,2,PAN CunHong1,3,LI YuHong1,2,ZHANG XiaoXiang1,2,HUANG NianSheng1,2,JI HongJuan1,2,DAI ZhengYuan1,3,LI AiHong1,2,3(
)
Received:
2020-07-13
Accepted:
2020-08-24
Online:
2021-05-01
Published:
2021-05-10
Contact:
AiHong LI
摘要:
【目的】基因聚合是实现水稻稻瘟病广谱抗性的有效途径之一。通过构建粳稻背景下不同双基因聚合系,利用长江下游粳型稻瘟病菌(Magnaporthe oryzea)菌株评价其抗性效应并解析其抗性效应产生的构成因子,为长江下游粳稻抗稻瘟病育种提供广谱抗性基因组合模式和种质资源。【方法】以粳稻07GY31为背景的Piz基因座不同复等位基因(Pigm、Pi40、Pi9、Pi2、Pizt和Piz)单基因系为核心,利用不完全NCII交配设计,分别与其他广谱抗性基因(Pi1、Pi54和Pi33)单基因系杂交,经分子标记辅助选择和农艺性状筛选,共构建18种不同基因组合的双基因聚合系。2019年利用长江下游粳稻种植区采集、分离的109个稻瘟病代表性菌株进行苗瘟、穗瘟人工接种鉴定及不同病圃的自然诱发鉴定,评价不同双基因聚合系的抗性效应,并分析双基因聚合系抗性效应的构成因子。【结果】Genotyping by sequencing(GBS)分析表明所构建的双基因聚合系均具有较高的背景恢复率,分布于97.08%(PPLPiz/Pi33)—99.08%(PPLPigm/Pi1)。表明除了目标基因区域不同外,所有双基因聚合系的遗传背景几乎完全与受体亲本07GY31一致。同时人工接菌鉴定表明绝大部分双基因聚合系苗瘟和穗瘟抗性水平都优于单基因系。其中苗瘟抗性效应较好的聚合系分别为PPLPigm/Pi1、PPLPigm/Pi54、PPLPigm/Pi33、PPLPi9/Pi33、PPLPi9/Pi54、PPLPi40/Pi54、PPLPi40/Pi33、PPLPi40/Pi1、PPLPi9/Pi1, 而穗瘟抗性效应较好的聚合系分别为PPLPigm/Pi1、PPLPigm/Pi54、PPLPigm/Pi33、PPLPi40/Pi33、PPLPi40/Pi54、PPLPi40/Pi1、PPLPizt/Pi33。不同抗性基因聚合后产生不同的效应,其中互补效应高且能有效表达是提高双基因聚合系苗瘟和穗瘟抗性的关键因子。双基因聚合系PPLPigm / Pi1、PPLPigm / Pi54和PPLPigm / Pi33在苗瘟和穗瘟的人工接种,以及在不同病圃的自然诱发鉴定中均表现稳定的广谱抗性,同时,农艺性状调查结果也表明这3个双基因聚合系的基本农艺性状与轮回亲本07GY31基本一致,因此,基因组合Pigm/Pi1、Pigm/Pi54和Pigm/Pi33是适于长江下游粳稻的广谱抗性基因组合模式。【结论】抗性基因的组合方式影响聚合系的抗性水平,互补效应高且能有效表达是粳型双基因聚合系抗性效应提高的关键因子。本研究构建的双基因聚合系及其抗性效应分析为长江下游广谱稻瘟病抗性粳稻品种的精准培育提供了种质资源和理论支撑。
吴云雨,肖宁,余玲,蔡跃,潘存红,李育红,张小祥,黄年生,季红娟,戴正元,李爱宏. 长江下游粳稻稻瘟病广谱抗性基因组合模式分析[J]. 中国农业科学, 2021, 54(9): 1881-1893.
WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China[J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
表1
用于检测目的基因的分子标记详细信息"
基因 Gene | 标记 Marker | 引物序列 Primer sequence (5′-3′) | 退火温度 Annealing temperature (℃) | 预期片段大小 Expected size (bp) |
---|---|---|---|---|
Pi2 | Pi2-InDel | F: GCAGCGGCTAGGGTTTATC | 60 | 110 |
R: CACCCAGCAACTGATTTGTCA | ||||
Pi9 | M-Pi9 | F: GCTGTGCTCCAAATGAGGAT | 55 | 291 |
R: GCGATCTCACATCCTTTGCT | ||||
Pi40 | AP5659-5 | F: CTCCTTCAGCTGCTCCTC | 55 | 288 |
R: TGATGACTTCCAAACGGTAG | ||||
Pigm | Z4794 | F: TGAATGTGAGAGGTTGACTGTGG | 55 | 334 |
R: CACGCCACCCTTCAATGGAGACT | ||||
Pizt | AP22 | F: GTGCATGAGTCCAGCTCAAA | 58 | 143 |
R: GTGTACTCCCATGGCTGCTC | ||||
Piz | S29742 | F: CAGTGAAACGAACGCTATG | 55 | 454 |
R: AATAGGAAGGGTTGATGTTG | ||||
Pi1 | RM224 | F: ATCGATCGATCTTCACGAGG | 55 | 163 |
R: TGCTATAAAAGGCATTCGGG | ||||
Pi54 | Pi54-1 | F: ATCGATCGATCTTCACGAGG | 55 | 216 |
R: GCTTCAATCACTGCTAGACC | ||||
Pi33 | RM72 | F: CCGGCGATAAAACAATGAG | 55 | 240 |
R: GCATCGGTCCTAACTAAGGG |
图3
双基因聚合系抗性效应分析桑基图 A:双基因聚合系苗瘟抗性效应分析桑基图Analysis of resistance effect of PPLs against seedling blast with sankey diagram;B:双基因聚合系穗瘟抗性效应分析桑基图Analysis of resistance effect of PPLs against panicle blast with sankey diagram。OE:重叠效应Overlapping effect;CE:互补效应Complementary effect;IE:互作效应Interaction effect"
表2
18个双基因聚合系及轮回亲本07GY31的基本农艺性状表现"
品系 Line | 抽穗期 Heading date (d) | 株高 Plant height (cm) | 单株有效穗数 Number of panicles per plant | 每穗总粒数 Number of grains per panicle | 结实率 Seed fertility (%) | 千粒重 1000-grain weight (g) | 单株产量 Grain yield per plant |
---|---|---|---|---|---|---|---|
PPLPigm/Pi1 | 97.2±1.26a | 100.55±3.05a | 11.38±1.32a | 126.32±4.58a | 92.02±0.35a | 26.32±1.42a | 34.81±2.02a |
PPLPigm/Pi54 | 96.5±0.24a | 99.82±2.58a | 11.22±1.04a | 126.25±6.72a | 92.52±0.82a | 26.04±1.08a | 34.12±1.56a |
PPLPigm/Pi33 | 97.0±2.13a | 99.65±2.85a | 10.78±0.95a | 127.95±5.56a | 91.89±0.64a | 26.54±0.84a | 33.63±1.88a |
PPLPi40/Pi1 | 95.5±2.28a | 98.75±0.85a | 10.95±1.58a | 125.85±7.22a | 93.25±1.08a | 27.06±1.32a | 34.77±3.14a |
PPLPi40/Pi54 | 94.7±1.89a | 98.28±1.42a | 11.32±0.68a | 127.46±8.18a | 94.28±0.92a | 26.38±1.62a | 35.89±2.28a |
PPLPi40/Pi33 | 95.2±1.56a | 99.12±1.78a | 10.56±1.84a | 126.28±5.42a | 93.75±0.48a | 27.59±0.82a | 34.49±1.92a |
PPLPi9/Pi1 | 91.8±2.32b | 98.30±1.65a | 11.24±1.08a | 120.24±3.92b | 88.32±0.74b | 25.88±0.82a | 30.89±0.89ab |
PPLPi9/Pi54 | 90.4±1.74b | 99.18±1.58a | 10.68±0.82a | 118.65±7.25b | 87.45±0.98b | 26.12±1.28a | 28.94±1.02b |
PPLPi9/Pi33 | 91.5±1.82b | 98.86±0.92a | 11.36±1.38a | 119.84±6.26b | 88.26±1.05b | 26.16±0.85a | 31.43±1.65ab |
PPLPi2/Pi1 | 98.4±2.16a | 102.45±2.37ab | 11.69±1.32a | 125.38±4.38a | 92.45±0.85a | 26.64±1.64a | 36.10±1.32a |
PPLPi2/Pi54 | 97.5±1.84a | 101.84±2.72a | 11.88±1.15a | 126.56±9.82a | 93.28±0.62a | 25.98±1.25a | 36.43±1.74a |
PPLPi2/Pi33 | 97.2±1.45a | 103.22±1.84b | 11.21±0.75a | 125.58±10.52a | 93.75±1.12a | 26.49±0.92a | 34.96±2.84a |
PPLPizt/Pi1 | 100.5±2.23c | 99.48±2.24a | 10.95±1.21a | 128.25±6.69a | 93.55±1.43a | 27.18±1.36a | 35.71±2.25a |
PPLPizt/Pi54 | 101.8±0.95c | 98.95±3.21a | 11.22±1.43a | 127.84±8.82a | 92.45±0.98a | 26.52±1.52a | 35.16±1.95a |
PPLPizt/Pi33 | 99.6±1.48a | 100.24±2.88a | 11.47±1.28a | 126.57±4.78a | 93.12±1.28a | 26.35±0.79a | 35.62±1.35a |
PPLPiz/Pi1 | 97.5±2.32a | 97.32±1.69a | 10.98±0.92a | 128.48±5.92a | 92.88±0.85a | 26.38±0.88a | 34.56±0.85a |
PPLPiz/Pi54 | 96.5±2.65a | 98.48±1.86a | 11.22±0.78a | 126.32±6.74a | 92.05±0.58a | 25.94±1.35a | 33.84±1.63a |
PPLPiz/Pi33 | 97.2±2.18a | 97.85±0.82a | 10.92±1.26a | 127.62±7.28a | 92.69±0.82a | 26.36±1.02a | 34.05±1.28a |
07GY31 | 96.8±1.24a | 98.55±2.52a | 11.24±1.34a | 126.57±6.28a | 92.36±0.74a | 26.28±1.28a | 34.53±1.56a |
图4
双基因聚合系在3个病圃的抗性表现 A:3个病圃的不同双基因聚合系的小区健康穗率与人工接种下穗瘟抗性频率之间的关系Relationship between HPP of PPLs at three disease nurseries and the RF of PPLs in artificial inoculation evaluation;B:双基因聚合系在不同病圃的穗瘟抗性表现Resistance performance of PPLs against panicle blast among different disease nurseries。JT:金坛Jintan;LJ:庐江Lujiang;CX:长兴Changxing"
[1] | DEAN R, VAN KAN J A, PRETORIUS Z A, HAMMOND-KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012,13(4):414-430. |
[2] | KHUSH G S, JENE K. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.)//Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, 2009: 1-10. |
[3] | GOUDA P K, SAIKUMAR S, VARMA C M, NAGESH K, THIPPESWARMY S, SHENOY V, RAMESHA M S, SHASHIDHAR H E. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid. Plant Breeding, 2013,132(1):61-69. |
[4] | ELLUR R K, KHANNA A, YADAV A, PATHANIA S, RAJASHEKARA H, SINGH V K, GOPALA KRISHNAN S, BHOWMICK P K, NAGARAJAN M, VINOD K K, PRAKASH G, MONDAL K K, SINGH N K, VINOD PRABHU K, SINGH A K. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Science, 2016,242:330-341. |
[5] | NIKS R E, QI X, MARCEL T C. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 2015,53:445-470. |
[6] | WANG G L, MACKILL D J, BONMAN J M, MCCOUCH S R, CHAMPOUX M C, NELSON R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994,136(4):1421-1434. |
[7] | LUKASIK E, TAKKEN F L. STANDing strong, resistance proteins instigators of plant defence. Current Opinion in Plant Biology, 2009,12(4):427-436. |
[8] | RAY S, SINGH P K, GUPTA D K, MAHATO A K, SARKAR C, RATHOUR R, SINGH N K, SHARMA T R. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Frontiers in Plant Science, 2016,7:1140. |
[9] | JIA Y, MCADAMS S A, BRYAN G T, HERSHEY H P, VALENT B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000,19(15):4004-4014. |
[10] | PARK C H, SHIRSEKAR G, BELLIZZI M, CHEN S, SONGKUMARN P, XIE X, SHI X, NING Y, ZHOU B, SUTTIVIRIYA P, WANG M, UMEMURA K, WANG G L. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathogens, 2016,12(3):e1005529. |
[11] | FUJISAKI K, ABE Y, ITO A, SAITOH H, YOSHIDA K, KANZAKI H, KANZAKI E, UTSUSHI H, YAMASHITA T, KAMOUN S, TERAUCHI R. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. The Plant Journal, 2015,83(5):875-887. |
[12] | ASHKANI S, RAFII M, SHABANIMOFRAD M, GHASEMZADEH A, RAVANFAR S A, LATIF M. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): Current status and future considerations. Critical Reviews in Biotechnology, 2016,36(2):353-367. |
[13] | SHARMA T, RAI A, GUPTA S, VIJAYAN J, DEVANNA B, RAY S. Rice blast management through host-plant resistance: Retrospect and prospects. Agricultural Research, 2012,1(1):37-52. |
[14] | XIE Z, YAN B X, SHOU J Y, TANG J, WANG X, ZHAI K R, LIU J Y, LI Q, LUO M Z, DENG Y W, HE Z H. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B, 2019,374(1767):20180308. |
[15] | WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 2017,16(12):2746-2760. |
[16] | ZHAO H J, WANG X Y, JIA Y L, MINKENBERG B, WHEATLEY M, FAN J B, JIA M H, FAMOSO A, EDWARDS J D, WAMISHE Y, VALENT B, WANG G L, YANG Y N. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nature Communications, 2018,9(1):2039. |
[17] | FUKUOKA S, YAMAMOTO S I, MIZOBUCHI R, YAMANOUCHI U, ONO K, KITAZAWA N, YASUDA N, FUJITA Y, NGUYEN T T, KOIZUMI S, SUGIMOTO K, MATSUMOTO T, YANO M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Scientific Reports, 2014,4:4550. |
[18] | FUKUOKA S, SAKA N, KOGA H, ONO K, SHIMIZU T, EBANA K, HAYASHI N, TAKAHASHI A, HIROCHIKA H, OKUNO K, YANO M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325(5943):998-1001. |
[19] | HAYASHI N, INOUE H, KATO T, FUNAO T, SHIROTA M, SHIMIZU T, KANAMORI H, YAMANE H, HAYANO-SAITO Y, MATSUMOTO T, YANO M, TAKATSUJI H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal, 2010,64(3):498-510. |
[20] | XU X, HAYASHI N, WANG C T, FUKUOKA S, KAWASAKI S, TAKATSUJI H, JIANG C J. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Molecular Breeding, 2014,34(2):691-700. |
[21] | INUKAI T, NAGASHIMA S, KATO M. Pid3-I1 is a race-specific partial-resistance allele at the Pid3 blast resistance locus in rice. Theoretical and Applied Genetics, 2019,132(2):395-404. |
[22] | VARIAR M, CRUZ CV, CARRILLO M, BHATT J, SANGAR R. Rice blast in India and strategies to develop durably resistant cultivars//Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, 2009: 359-373. |
[23] | 宛柏杰, 刘凯, 赵绍路, 朱静雯, 刘艳艳, 张桂云, 朱国永, 王爱民, 唐红生, 孙明法, 严国红. 水稻抗稻瘟病基因Pi-ta、Pi-b、Pigm和Pi54在骨干亲本中的分布以及对穗颈瘟抗性的作用. 西南农业学报, 2020,33(1):1-6. |
WAN B J, LIU K, ZHAO S L, ZHU J W, LIU Y Y, ZHANG G Y, ZHU G Y, WANG A M, TANG H S, SUN M F, YAN G H. Distribution of rice blast resistance genes Pi-ta, Pi-b, Pigm and Pi54 in backbone parent and their relationships with neck blast resistance. Southwest China Journal of Agricultural Sciences, 2020,33(1):1-6. (in Chinese) | |
[24] | 朱勇良, 范方军, 谢裕林, 伍应保, 乔中英, 张建栋. 江苏省迟熟中粳新品系稻瘟病抗病基因检测与抗性评价. 江苏农业科学, 2018,46(19):106-109. |
ZHU Y L, FAN F J, XIE Y L, WU Y B, QIAO Z Y, ZHANG J D. Detection and evaluation of blast resistance genes in late mature medium japonica lines in Jiangsu Province. Jiangsu Agricultural Sciences, 2018,46(19):106-109. (in Chinese) | |
[25] | JIANG H C, FENG Y T, BAO L, LI X, GAO G J, ZHANG Q L, XIAO J H, XU C G, HE Y Q. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Molecular Breeding, 2012,30(4):1679-1688. |
[26] | XIAO W M, YANG Q Y, HUANG M, GUO T, LIU Y Z, WANG J F, YANG G L, ZHOU J Y, YANG J Y, ZHU X Y, CHEN Z Q, WANG H. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice, 2019,12(1):78. |
[27] | HITTALMANI S, PARCO A, MEW T, ZEIGLER R, HUANG N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics, 2000,100(7):1121-1128. |
[28] | XIAO N, WU Y Y, PAN C H, YU L, CHEN Y, LIU G Q, LI Y H, ZHANG X X, WANG Z P, DAI Z Y, LIANG C Z, LI A H. Improving of rice blast resistances in japonica by pyramiding major R genes. Frontiers in Plant Science, 2017,7:1918. |
[29] | WU Y Y, XIAO N, CHEN Y, YU L, PAN C H, LI Y H, ZHANG X X, HUANG N S, JI H J, DAI Z Y, CHEN X J, LI A H. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice, 2019,12(1):11. |
[30] | ZHONG Z H, CHEN M L, LIN L Y, HAN Y J, BAO J D, TANG W, LIN L L, LIN Y H, SOMAI R, LU L, et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME Journal, 2018,12(8):1867-1878. |
[31] | XIAO N, WU Y Y, WANG Z P, LI Y H, PAN C H, ZHANG X X, YU L, LIU G Q, ZHOU C H, JI H J, HUANG N S, JIANG M, DAI Z Y, LI A H. Improvement of seedling and panicle blast resistance in Xian rice varieties following Pish introgression. Molecular Breeding, 2018,38:142. |
[32] | 陈波, 周年兵, 郭保卫, 黄大山, 陈忠平, 花劲, 霍中洋, 张洪程. 南方稻区“籼改粳”研究进展. 扬州大学学报 (农业与生命科学版), 2017,38(1):67-72, 88. |
CHEN B, ZHOU N B, GUO B W, HUANG D S, CHEN Z P, HUA J, HUO Z Y, ZHANG H C. Progress of “indica rice to japonica rice” in southern China. Journal of Yangzhou University (Agricultural and Life Science Edition), 2017,38(1):67-72, 88. (in Chinese) | |
[33] | 殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020,53(5):890-903. |
YIN M, LIU S W, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020,53(5):890-903. (in Chinese) | |
[34] | WU Y Y, XIAO N, YU L, PAN C H, LI Y H, ZHANG X X, LIU G Q, DAI Z Y, PAN X B, LI A H. Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE, 2015,10(6):e0126130. |
[35] | 王小秋, 杜海波, 陈夕军, 李明友, 王嘉楠, 许志文, 冯志明, 陈宗祥, 左示敏. 江苏近年育成粳稻新品种/系的稻瘟病抗性基因及穗颈瘟抗性分析. 中国水稻科学, 2020,34(5):413-424. |
WANG X Q, DU H B, CHEN X J, LI M Y, WANG J N, XU Z W, FENG Z M, CHEN Z X, ZUO S M. Analysis of blast resistant genes and neck blast resistance of japonica rice varieties/lines recently developed in Jiangsu Province. Chinese Journal of Rice Science, 2020,34(5):413-424. (in Chinese) | |
[36] | WU Y Y, CHEN Y, PAN C H, XIAO N, YU L, LI Y H, ZHANG X X, PAN X B, CHEN X J, LIANG C Z, DAI Z Y, LI A H. Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze River, China. Plant Disease, 2017,101(7):1283-1291. |
[37] | PURI K D, SHRESTHA S M, CHHETRI G B K, JOSHI K D. Leaf and neck blast resistance reaction in tropical rice lines under green house condition. Euphytica, 2009,165(3):523-532. |
[38] | 卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992,6(1):47-48. |
LU Y J, ZHENG K L. A simple method for isolation of rice DNA. Chinese Journal of Rice Science, 1992,6(1):47-48. (in Chinese) | |
[39] | POLAND J A, BROWN P J, SORRELLS M E, JANNINK J L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 2012,7(2):e32253. |
[40] | KAWAHARA Y, DE LA BASTIDE M, HAMILTON J P, KANAMORI H, MCCOMBIE W R, OUYANG S, SCHWARTZ D C, TANAKA T, WU J, ZHOU S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 2013,6(1):4. |
[41] | WALKER M A, PEDAMALLU C S, OJESINA A I, BULLMAN S, SHARPE T, WHELAN C W, MEYERSON M. GATK PathSeq: A customizable computational tool for the discovery and identification of microbial sequences in libraries from eukaryotic hosts. Bioinformatics, 2018,34(24):4287-4289. |
[42] | MACKILL D, BONMAN J. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992,82(7):746-749. |
[43] | WU Y Y, YU L, PAN C H, DAI Z Y, LI Y H, XIAO N, ZHANG X X, JI H J, HUANG N S, ZHAO B H, et al. Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Molecular Breeding, 2016,36(2):12. |
[44] | 彭洪江, 张杰, 饶宗文, 彭士钟, 吴先丽. 不同生态区的稻瘟病调查. 西南农业学报, 1995,8(1):59-64. |
PENG H J, ZHANG J, RAO Z W, PENG S Z, WU X L. Investigation on rice blast in different ecological areas. Southwest China Journal of Agricultural Sciences, 1995,8(1):59-64. (in Chinese) | |
[45] | DIVYA B, BISWAS A, ROBIN S, RABINDRAN R, JOEL A J. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). Journal of Genetics, 2014,93(2):415-424. |
[46] | CHAIPANYA C, TELEBANCO-YANORIA M J, QUIME B, LONGYA A, KORINSAK S, KORINSAK S, TOOJINDA T, VANAVICHIT A, JANTASURIYARAT C, ZHOU B. Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. Rice, 2017,10(1):18. |
[47] | CHEN X L, JIA Y L, JIA M H, PINSON S R M, WANG X Y, WU B M. Functional interactions between major rice blast resistance genes, Pi-ta and Pi-b, and minor blast resistance quantitative trait loci. Phytopathology, 2018,108(9):1095-1103. |
[48] | LI W, DENG Y W, NING Y S, HE Z H, WANG G L. Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding. Annual Review of Plant Biology, 2020,71:575-603. |
[49] | XU X, LV Q M, SHANG J J, PANG Z Q, ZHOU Z Z, WANG J, JIANG G H, TAO Y, XU Q, LI X B, ZHAO X F, LI S G, XU J C, ZHU L H. Excavation of Pid3 orthologs with differential resistance spectra to Magnaporthe oryzae in rice resource. PLoS ONE, 2014,9(3):e93275. |
[50] | PRADHAN S K, NAYAK D K, MOHANTY S, BEHERA L, BARIK S R, PANDIT E, LENKA S, ANANDAN A. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice, 2015,8(1):51. |
[1] | 刘瑞, 赵羽涵, 付忠举, 顾欣怡, 王艳霞, 靳学慧, 杨莹, 吴伟怀, 张亚玲. 黑龙江省和海南省PWL基因家族在稻瘟病菌中的分布及变异[J]. 中国农业科学, 2023, 56(2): 264-274. |
[2] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[3] | 汪文娟,苏菁,陈深,杨健源,陈凯玲,冯爱卿,汪聪颖,封金奇,陈炳,朱小源. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析[J]. 中国农业科学, 2022, 55(7): 1346-1358. |
[4] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[5] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[6] | 赵黎明,黄安琪,王亚新,蒋文鑫,周行,沈雪峰,冯乃杰,郑殿峰. 连续旋耕下深耕对寒地优质粳稻产量形成的影响[J]. 中国农业科学, 2022, 55(22): 4550-4566. |
[7] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[8] | 邵小龙,徐文,王潇,杨晓静,沈飞,刘琴. 3种粳稻籽粒水分解吸过程中的裂纹变化[J]. 中国农业科学, 2022, 55(2): 390-402. |
[9] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[10] | 邓艾兴,刘猷红,孟英,陈长青,董文军,李歌星,张俊,张卫建. 田间增温1.5℃对高纬度粳稻产量和品质的影响[J]. 中国农业科学, 2022, 55(1): 51-60. |
[11] | 马会珍,陈心怡,王志杰,朱盈,蒋伟勤,任高磊,马中涛,魏海燕,张洪程,刘国栋. 中国部分优质粳稻外观及蒸煮食味品质特征比较[J]. 中国农业科学, 2021, 54(7): 1338-1353. |
[12] | 许方甫,卞金龙,韩超,陈志青,刘国栋,邢志鹏,胡雅杰,魏海燕,张洪程. 淮北地区优质食味粳稻温光适应性和最佳播种期[J]. 中国农业科学, 2021, 54(7): 1365-1381. |
[13] | 蒋伟勤,胡群,俞航,马会珍,任高磊,马中涛,朱盈,魏海燕,张洪程,刘国栋,胡雅杰,郭保卫. 优质食味粳稻控混肥一次性基施效应[J]. 中国农业科学, 2021, 54(7): 1382-1396. |
[14] | 刘秋员,周磊,田晋钰,程爽,陶钰,邢志鹏,刘国栋,魏海燕,张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397-1409. |
[15] | 杨陶陶,解嘉鑫,黄山,谭雪明,潘晓华,曾勇军,石庆华,张俊,曾研华. 花后增温对双季晚粳稻产量和稻米品质的影响[J]. 中国农业科学, 2020, 53(7): 1338-1347. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|