中国农业科学 ›› 2021, Vol. 54 ›› Issue (9): 1881-1893.doi: 10.3864/j.issn.0578-1752.2021.09.006

• 植物保护 • 上一篇    下一篇

长江下游粳稻稻瘟病广谱抗性基因组合模式分析

吴云雨1,2(),肖宁1,2,4,余玲1,2,蔡跃1,2,潘存红1,3,李育红1,2,张小祥1,2,黄年生1,2,季红娟1,2,戴正元1,3,李爱宏1,2,3()   

  1. 1江苏里下河地区农业科学研究所,江苏扬州225007
    2扬州大学江苏省作物基因组学和分子育种重点实验室,江苏扬州225009
    3扬州大学江苏省粮食作物现代产业技术协同创新中心,江苏扬州225009
    4中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室,北京 100193
  • 收稿日期:2020-07-13 接受日期:2020-08-24 出版日期:2021-05-01 发布日期:2021-05-10
  • 通讯作者: 李爱宏
  • 作者简介:吴云雨,E-mail:wuyunyuyu@163.com
  • 基金资助:
    国家自然科学基金(31801342);国家自然科学基金(31971868);江苏省农业科技自主创新基金(CX182022);江苏省重点研发计划(BE2019339);江苏省农业重大新品种创制项目(PZCZ201702);江苏省作物基因组学和分子育种重点实验室(BM2018003);江苏省自然科学基金(BK20181216);中国农业科学院植物病虫害生物学国家重点实验室开放基金(SKLOF201909)

Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China

WU YunYu1,2(),XIAO Ning1,2,4,YU Ling1,2,CAI Yue1,2,PAN CunHong1,3,LI YuHong1,2,ZHANG XiaoXiang1,2,HUANG NianSheng1,2,JI HongJuan1,2,DAI ZhengYuan1,3,LI AiHong1,2,3()   

  1. 1Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, Jiangsu
    2Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu
    4State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2020-07-13 Accepted:2020-08-24 Online:2021-05-01 Published:2021-05-10
  • Contact: AiHong LI

摘要:

【目的】基因聚合是实现水稻稻瘟病广谱抗性的有效途径之一。通过构建粳稻背景下不同双基因聚合系,利用长江下游粳型稻瘟病菌(Magnaporthe oryzea)菌株评价其抗性效应并解析其抗性效应产生的构成因子,为长江下游粳稻抗稻瘟病育种提供广谱抗性基因组合模式和种质资源。【方法】以粳稻07GY31为背景的Piz基因座不同复等位基因(PigmPi40Pi9Pi2PiztPiz)单基因系为核心,利用不完全NCII交配设计,分别与其他广谱抗性基因(Pi1Pi54Pi33)单基因系杂交,经分子标记辅助选择和农艺性状筛选,共构建18种不同基因组合的双基因聚合系。2019年利用长江下游粳稻种植区采集、分离的109个稻瘟病代表性菌株进行苗瘟、穗瘟人工接种鉴定及不同病圃的自然诱发鉴定,评价不同双基因聚合系的抗性效应,并分析双基因聚合系抗性效应的构成因子。【结果】Genotyping by sequencing(GBS)分析表明所构建的双基因聚合系均具有较高的背景恢复率,分布于97.08%(PPLPiz/Pi33)—99.08%(PPLPigm/Pi1)。表明除了目标基因区域不同外,所有双基因聚合系的遗传背景几乎完全与受体亲本07GY31一致。同时人工接菌鉴定表明绝大部分双基因聚合系苗瘟和穗瘟抗性水平都优于单基因系。其中苗瘟抗性效应较好的聚合系分别为PPLPigm/Pi1、PPLPigm/Pi54、PPLPigm/Pi33、PPLPi9/Pi33、PPLPi9/Pi54、PPLPi40/Pi54、PPLPi40/Pi33、PPLPi40/Pi1、PPLPi9/Pi1, 而穗瘟抗性效应较好的聚合系分别为PPLPigm/Pi1、PPLPigm/Pi54、PPLPigm/Pi33、PPLPi40/Pi33、PPLPi40/Pi54、PPLPi40/Pi1、PPLPizt/Pi33。不同抗性基因聚合后产生不同的效应,其中互补效应高且能有效表达是提高双基因聚合系苗瘟和穗瘟抗性的关键因子。双基因聚合系PPLPigm / Pi1、PPLPigm / Pi54和PPLPigm / Pi33在苗瘟和穗瘟的人工接种,以及在不同病圃的自然诱发鉴定中均表现稳定的广谱抗性,同时,农艺性状调查结果也表明这3个双基因聚合系的基本农艺性状与轮回亲本07GY31基本一致,因此,基因组合Pigm/Pi1Pigm/Pi54Pigm/Pi33是适于长江下游粳稻的广谱抗性基因组合模式。【结论】抗性基因的组合方式影响聚合系的抗性水平,互补效应高且能有效表达是粳型双基因聚合系抗性效应提高的关键因子。本研究构建的双基因聚合系及其抗性效应分析为长江下游广谱稻瘟病抗性粳稻品种的精准培育提供了种质资源和理论支撑。

关键词: 长江下游, 粳稻, 稻瘟病菌, 稻瘟病, 基因聚合, 效应分析

Abstract:

【Objective】Gene pyramiding is one of the most effective ways to achieve broad-spectrum resistance against Magnaporthe oryzae. The objective of this study is to construct a set of polygene pyramiding lines (PPLs) under the background of japonica rice, to evaluate their resistance performances and analysis the components of their resistance effects using M. oryzae strains collected from lower region of the Yangtze River, China, thus providing broad-spectrum resistance gene combination pattern and germplasm resources for japonica rice resistance breeding in lower region of the Yangtze River, China. 【Method】Monogenic lines with multiple alleles of the Piz locus (Pigm, Pi40, Pi9, Pi2, Pizt and Piz) with the background of japonica rice 07GY31 as the backbone, crossed with other broad-spectrum resistance gene Pi1, Pi54 and Pi33, respectively using the incomplete NCII mating design. A total of 18 different PPLs were constructed using marker-assisted selection (MAS) and agronomic traits screening. Artificial inoculation assays at seedling and heading stage with 109 representative M. oryzae strains collected from lower region of the Yangtze River, combined with natural induction identification under multiple field environments were conducted to evaluate the resistance performances of different PPLs, and to analyze the component factors of the resistance effects of the PPLs. 【Result】Genotyping by sequencing (GBS) analysis shows that the constructed PPLs all have a high background recovery rate, which was ranging from 97.08% (PPL Piz/Pi33) to 99.08% (PPLPigm/Pi1), indicated that the genetic background of all PPLs was almost fully identical to that of the recurrent parent 07GY31. The seedling blast and panicle blast resistance levels of most PPLs were significantly higher than those of monogenic lines under artificial inoculation conditions, the PPLs with better resistance to seedling blast are PPLPigm/Pi1, PPLPigm/Pi54, PPLPigm/Pi33, PPLPi9/Pi33, PPLPi9/Pi54, PPLPi40/Pi54, PPLPi40/Pi33, PPLPi40/Pi1 and PPLPi9/Pi1, respectively, and the PPLs with outstanding performance in panicle blast are PPLPigm/Pi1, PPLPigm/Pi54, PPLPigm/Pi33, PPLPi40/Pi33, PLPi40/Pi54, PPLPi40/Pi1 and PPLPizt/Pi33, respectively. Different resistance gene combinations produced different effects after pyramiding. High complementary effect and which could be fully expressed is the key factor for the improvement of the resistance level of seedling blast and panicle blast of the PPLs. In addition, PPLPigm/Pi1, PPLPigm/Pi54 and PPLPigm/Pi33 displayed broad-spectrum resistance in artificial inoculation at seedling and heading stage, and showed stable broad-spectrum resistance under different disease nurseries. Besides, agronomic traits evaluation also showed PPLs with these three gene combinations were at par to the recurrent parent. Therefore, Pigm/Pi1, Pigm/Pi54 and Pigm/Pi33 are broad-spectrum resistance gene combination patterns suitable for japonica rice resistance breeding in lower region of the Yangtze River, China. 【Conclusion】The combination pattern of resistance genes affects the resistance level of the PPLs, and high complementary effect and which could be fully expressed is the key factor for the improvement of the resistance level of the PPLs in japonica background. In addition, the development of PPLs and component factors analysis in this study provides valuable theoretical support and innovative germplasm resources for the precise breeding broad-spectrum japonica varieties in lower region of the Yangtze River, China.

Key words: lower region of the Yangtze River, japonica rice, Magnaporthe oryzae, rice blast, gene pyramiding, effect analysis