中国农业科学

• • 上一篇    

PvEG261对普通菜豆镰孢菌枯萎病抗性和抗旱性的影响

薛仁风1,丰明1,黄宇宁1Matthew BLAIR2Walter MESSIER3,葛维德1
  

  1. 1辽宁省农业科学院作物研究所,中国辽宁沈阳 1101612田纳西州立大学农业与环境科学系,美国田纳西州纳什维尔 372093进化基因组学公司,美国路易斯安那州拉斐特 80501
  • 收稿日期:2021-04-06 接受日期:2021-05-27 发布日期:2021-07-07
  • 联系方式: 薛仁风,E-mail:xuerf82@163.com

Effects of PvEG261 gene on the Fusarium wilt and drought-resistance in common bean

XUE RenFeng1, FENG Ming1, HUANG YuNing1, Matthew BLAIR2, Walter MESSIER3, GE WeiDe1 #br#   

  1. 1Crop research institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China; 2 Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA; 3 Evolutionary Genomics, Inc., Lafayette 80501, LA, USA
  • Received:2021-04-06 Accepted:2021-05-27 Online:2021-07-07

摘要: 【目的】分析普通菜豆PvEG261的序列及表达模式特征,并研究其抗枯萎病和抗旱功能,为普通菜豆镰孢菌枯萎病抗病和抗旱信号调控网络解析及分子育种奠定基础。【方法】对PvEG261开放读码框(open reading frameORF)进行生物信息学分析,预测该基因编码蛋白质的理化性质、二级结构、信号肽序列,在NCBI中通过Blastp检索高同源性蛋白序列进行序列比对并构建系统发育进化树;利用qRT-PCR技术分析PvEG261组织表达特异性及响应枯萎病原菌、干旱胁迫的表达模式;构建PvEG261过表达载体,转化发根农杆菌K599菌株,诱导普通菜豆产生转基因不定根系,同时构建PvEG261沉默载体,其体外转录产物接种普通菜豆,干扰PvEG261的表达,通过接种镰孢菌枯萎病原菌和干旱处理,观察对照、过表达和基因沉默菜豆植株的表型,进行抗病性和抗旱性鉴定,并测定过氧化氢(H2O2)含量、丙二醛(MDA)含量、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性等生理生化指标。【结果】PvEG261cDNA序列长471 bp,编码156个氨基酸组成的蛋白质。结构预测其含有10strand结构,基因编码产物预测分子质量为38.89 kD,理论pI5.21PvEG261属于Dirigent超家族成员,包含10个氨基酸的信号肽序列,属于外分泌蛋白。PvEG261与豇豆DIR22蛋白亲缘关系最近,达到91.61%qRT-PCR结果显示,接种枯萎病原菌和干旱胁迫后,该基因的在菜豆根组织中表达量明显上升,而且该基因具有明显的组织表达特异性,在根中的表达量最高。接种病原菌和干旱胁迫后,与对照相比,过表达植株的抗病性和抗旱性水平明显提高,植株枯萎病发病程度及缺水造成的萎蔫程度均显著降低,根中H2O2含量、POD活性、SOD活性均显著高于对照植株,MDA含量显著低于对照植株,而基因沉默植株发病程度及萎蔫程度均显著升高,根中H2O2含量、POD活性、SOD活性均显著低于对照植株,MDA含量则显著高于对照植株。【结论】PvEG261响应枯萎病原菌侵染和干旱胁迫,并且正向调控普通菜豆镰孢菌枯萎病抗性和抗旱性水平。

关键词: 普通菜豆, PvEG261, 镰孢菌枯萎病, 干旱胁迫, 响应机制

Abstract: 【ObjectiveBy analyzing the sequence and expression pattern characteristics of PvEG261 from common beans, and studying its resistance to Fusarium wilt and drought, the foundation was laid for the signal regulation network analysis of Fusarium wilt and drought-resistance and molecular breeding in common beans. MethodBioinformatics analysis was performed on the open reading frame (ORF) of PvEG261 to predict the physical and chemical properties, secondary structure, signal peptide sequence of the protein encoded by the PvEG261, and search for highly homologous protein sequence in NCBI database through Blastp tool online for sequence alignment and phylogenetic tree construction; the tissue expression specificity of PvEG261 and the expression pattern in response to Fusarium wilt pathogen and drought stress were analyzed by qRT-PCR; PvEG261 overexpression vector was constructed and transformed into Agrobacterium rhizogenes K599 to induce the generation of hairy transgenic roots in common beans. Meanwhile, the PvEG261 silencing vector was constructed, and the transcription product in vitro was inoculated on the seedlings of common bean to interfere with PvEG261 expression. Through inoculation with the pathogen and drought treatment, the phenotypes of control, PvEG261-overexpressed and silenced plants were observed, disease and drought-resistance were both identified, and hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activity as physiological and biochemical indicators were all assayed. ResultThe cDNA sequence of PvEG261 was 471 bp, which encodes a protein composed of 156 amino acids. The structure prediction indicated that it contained 10 strand structures, the predicted molecular mass of the encoding product was 38.89 kD, and the theoretical pI was 5.21. PvEG261 belonged to the members of dirigent gene superfamily, it contained a signal peptide sequence of 10 amino acids, and belonged to a secreted protein. The relationship between PvEG261 and cowpea DIR22 protein is the closest, which reached 91.61%. The results of qRT-PCR showed that the expression in the root tissues increased significantly after inoculation with Fusarium wilt pathogen and drought treatment, and the gene has obvious tissue expression specificity, with the highest expression level in the roots. After inoculation with pathogen and drought treatment, the disease and drought-resistance of the overexpressed plants were significantly improved in comparison with the control, the plant disease scores and the wilting degree caused by water shortage were significantly reduced, and the H2O2 content, POD and SOD activity in the roots were all significantly higher than the control plant, while the MDA content was dramatically lower than the control plant. The disease and wilting degree of the gene silenced plants were significantly increased. The H2O2 content, POD and SOD activity in the roots were significantly lower than the control plant, and the MDA content was significantly higher than the control plants.ConclusionPvEG261 responded to Fusarium wilt pathogen infection and drought stress, and positively regulated the Fusarium wilt and drought-resistance in common beans.

Key words: common bean,  , PvEG261, fusarium wilt, drought stress, response mechanism