中国农业科学 ›› 2020, Vol. 53 ›› Issue (24): 4969-4981.doi: 10.3864/j.issn.0578-1752.2020.24.001
司旭阳1(),贾哓玮1(
),张洪艳1,贾羊羊1,田士军1,张科2(
),潘延云1(
)
收稿日期:
2020-03-23
接受日期:
2020-06-02
出版日期:
2020-12-16
发布日期:
2020-12-28
通讯作者:
张科,潘延云
作者简介:
司旭阳,E-mail: 基金资助:
SI XuYang1(),JIA XiaoWei1(
),ZHANG HongYan1,JIA YangYang1,TIAN ShiJun1,ZHANG Ke2(
),PAN YanYun1(
)
Received:
2020-03-23
Accepted:
2020-06-02
Online:
2020-12-16
Published:
2020-12-28
Contact:
Ke ZHANG,YanYun PAN
摘要:
【目的】探知小麦基因组序列中肌醇磷脂依赖的磷脂酶C(PLC)的编码基因,解析小麦中PLC基因的结构与进化特征,揭示TaPLC基因在小麦各组织中的表达模式及其响应盐胁迫和干旱胁迫过程中的表达规律,以便深入分析小麦TaPLC基因调节小麦应答盐或干旱胁迫中的生理作用。【方法】基于Ensembl Plants全基因组数据库,以水稻和拟南芥PLC基因为参考序列,检索小麦TaPLC基因家族(
司旭阳,贾哓玮,张洪艳,贾羊羊,田士军,张科,潘延云. 中国春小麦肌醇磷脂依赖的磷脂酶C基因的全基因组鉴定及表达分析[J]. 中国农业科学, 2020, 53(24): 4969-4981.
SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat[J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
表1
小麦TaPLC基因家族各成员的分子和生化特征"
基因名称 Gene name | 基因ID Gene ID | 染色体定位a Chromosomal location | 开放阅读框 Open reading frame (bp) | 蛋白质b Protein | ||
---|---|---|---|---|---|---|
大小 Size (aa) | 分子量 MW (kD) | 等电点 pI | ||||
TaPLC1A | TraesCS1A02G069300 | 1A:51700021—51707185 | 1758 | 585 | 66.01 | 6.07 |
TaPLC1D | TraesCS1D02G071800 | 1D:52338417—52345805 | 1761 | 586 | 66.19 | 6.03 |
TaPLC2A | TraesCS2A02G084000 | 2A:38534860—38538480 | 1830 | 609 | 68.5 | 5.91 |
TaPLC2B | TraesCS2B02G098500 | 2B:58321242—58325230 | 1821 | 606 | 68.22 | 6.06 |
TaPLC2D | TraesCS2D02G082000 | 2D:35259471—35263395 | 1824 | 607 | 68.45 | 5.88 |
TaPLC3A | TraesCS4A02G109000 | 4A:129086595—129090166 | 1902 | 633 | 71.11 | 5.54 |
TaPLC3B | TraesCS4B02G195200 | 4B:420197892—420201623 | 1902 | 633 | 71.00 | 5.75 |
TaPLC3D | TraesCS4D02G195800 | 4D:340085748—340090648 | 1902 | 633 | 71.05 | 5.84 |
TaPLC4A | TraesCS5A02G155300 | 5A:333407514—333413175 | 1773 | 590 | 65.73 | 6.05 |
TaPLC4B | TraesCS5B02G153600 | 5B:283008744—283014326 | 1770 | 589 | 65.65 | 6.06 |
TaPLC4D | TraesCS5D02G160300 | 5D:250061407—250066699 | 1770 | 589 | 65.65 | 6.06 |
表2
TaPLC基因表达蛋白的亚细胞分布特征"
基因Gene | 亚细胞定位Subcellular localization |
---|---|
TaPLC1A | 线粒体:8,叶绿体:4,细胞核:1 Mito: 8, chlo: 4, nucl: 1 |
TaPLC1D | 线粒体:8,叶绿体:4,细胞核:1 Mito: 8, chlo: 4, nucl: 1 |
TaPLC2A | 叶绿体:7,细胞核:3,线粒体:2.5,线粒体基质:2 Chlo: 7, nucl: 3, mito: 2.5, cyto_mito: 2 |
TaPLC2B | 叶绿体:6,线粒体:5.5,线粒体基质:3.5,细胞核:1 Chlo: 6, mito: 5.5, cyto_mito: 3.5, nucl: 1 |
TaPLC2D | 叶绿体:7,线粒体:4.5,线粒体基质:3,细胞核:1 Chlo: 7, mito: 4.5, cyto_mito: 3, nucl: 1 |
TaPLC3A | 细胞质:8,细胞核:4,叶绿体:1 Cyto: 8, nucl: 4, chlo: 1 |
TaPLC3B | 细胞质:8,细胞核:3,叶绿体:1,线粒体:1 Cyto: 8, nucl: 3, chlo: 1, mito: 1 |
TaPLC3D | 细胞质:6,细胞核:3,线粒体:2,过氧化物:2 Cyto: 6, nucl: 3, mito: 2, pero: 2 |
TaPLC4A | 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5 |
TaPLC4B | 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5 |
TaPLC4D | 线粒体:10,叶绿体和线粒体:6.83333,线粒体基质:5.83333,叶绿体:2.5 Mito: 10, chlo_mito: 6.83333, cyto_mito: 5.83333, chlo: 2.5 |
[1] |
GONG Z, XIONG L, SHI H, YANG S, HERRERA-ESTRELLA L R, XU G, CHAO D Y, LI J, WANG P Y, QIN F, LI J, DING Y, SHI Y, WANG Y, YANG Y, GAO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020,63(5):635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[2] | 江成, 周厚君, 赵岩秋, 何辉, 楚立威, 宋学勤, 卢孟柱. 干旱和高盐胁迫下钙离子依赖核酸酶基因CDD对银腺杨84K生长发育的影响. 林业科学, 2019,55(2):33-40. |
JIANG C, ZHOU H J, ZHAO Y Q, HE H, CHU L W, SONG X Q, LU M Z. Effects of CDD gene on the growth and development of Populus alba× P. glandulosa ‘84K’ in response to drought and salt stresses. Scientia Silvae Sinicae, 2019,55(2):33-40. (in Chinese) | |
[3] |
HOU Q, UFER G, BARTELS D. Lipid signalling in plant responses to abiotic stress. Plant, Cell and Environment, 2016,39(5):1029-1048.
doi: 10.1111/pce.12666 pmid: 26510494 |
[4] |
MUNNIK T, VERMEER J E. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell and Environment, 2010,33(4):655-669.
doi: 10.1111/j.1365-3040.2009.02097.x pmid: 20429089 |
[5] |
TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinositide-specific phospholipase C gene family inArabidopsis thaliana. Plant Physiology and Biochemistry, 46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015 pmid: 18534862 |
[6] |
SHI J, GONZALES R A, BHATTACHARYYA M K. Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. The Plant Journal, 1995,8(3):381-390.
doi: 10.1046/j.1365-313x.1995.08030381.x pmid: 7550376 |
[7] |
PICAL C, KOPKA J, MULLER R B, HETHERINGTON A M, GRAY J E. Isolation of 2 cDNA clones for phosphoinositide-specific phospholipase C from epidermal peels (accession No. X95877) and guard cells (accession No. Y11931) of Nicotiana rustica (PGR 97-086). Plant Physiology, 1997,114:747-749.
doi: 10.1104/pp.114.2.747 pmid: 9235602 |
[8] |
TRIPATHY M K, TYAGI W, GOSWAMI M, KAUL T, SINGLA-PAREEK S L, DESWAL R, REDDY M K, SOPORY S K. Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Molecular Biology Reporter, 2012,30(2):488-497.
doi: 10.1007/s11105-011-0360-z |
[9] |
LI L, WANG F, YAN P, JING W, ZHANG C, KUDLA J, ZHANG W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice . New Phytologist, 2017,214(3):1172-1187.
doi: 10.1111/nph.14426 |
[10] |
KOPKA J, PICAL C, GRAY J E, MULLER-ROBER B. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiology, 1998,116:239-250.
doi: 10.1104/pp.116.1.239 pmid: 9449844 |
[11] |
WANG C R, YANG A F, YUE G D, GAO Q, YIN H Y, ZHANG J R. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta, 2008,227(5):1127-1140.
doi: 10.1007/s00425-007-0686-9 |
[12] |
PAN Y Y, WANG X, MA L G, SUN D Y. Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant and Cell Physiology, 2005,46(10):1657-1665.
doi: 10.1093/pcp/pci181 pmid: 16085656 |
[13] |
KIM Y J, KIM J E, LEE J H, LEE M H, JUNG H W, BAHK Y Y, HWANG B K, HWANG I, KIM W T. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Letters, 2004,556(1):127-136.
doi: 10.1016/S0014-5793(03)01388-7 |
[14] |
GNANARAJ M, UDHAYAKUMAR N, RAJIV GR, MANOHARAN K. Isolation and gene expression analysis of Phospholipase C in response to abiotic stresses from Vigna radiata (L.) Wilczek. Indian Journal of Experimental Biology, 2015,53(6):335-341.
pmid: 26155672 |
[15] |
CAO Z, ZHANG J, LI Y, XU X, LIU G, BHATTACHARRYA M K, YANG H, REN D. Preparation of polyclonal antibody specific for AtPLC4, an Arabidopsis phosphatidylinositol-specific phospholipase C in rabbits. Protein Expression and Purification, 2007,52(2):306-312.
doi: 10.1016/j.pep.2006.10.007 |
[16] |
XIA K, WANG B, ZHANG J, LI Y, YANG H, REN D. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance. Plant, Cell and Environment, 2017,40(8):1317-1331.
doi: 10.1111/pce.12918 pmid: 28102910 |
[17] |
KANEHARA K, YU C Y, CHO Y, CHEONG W F, TORTA F, SHUI G, WENK M R, NAKAMURA Y. Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genetics, 2015,11(9):e1005511.
doi: 10.1371/journal.pgen.1005511 pmid: 26401841 |
[18] |
LI L, HE Y, WANG Y, ZHAO S, CHEN X, YE T, WU Y, WU Y. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. The Plant Journal: for Cell and Molecular Biology, 2015,84(3):504-215.
doi: 10.1111/tpj.2015.84.issue-3 |
[19] |
ZHANG Q, VAN WIJK R, ZARZA X, SHAHBAZ M, VAN HOOREN M, GUARDIA A, SCUFFI D, GARCÍA-MATA C, VAN DEN ENDE W, HOFFMANN-BENNING S, HARING M A, LAXALT A M, MUNNIK T. Knock-down of Arabidopsis PLC5 reduces primary root growth and secondary root formation while overexpression improves drought tolerance and causes stunted root hair growth. Plant and Cell Physiology, 2018,59(10):2004-2019.
doi: 10.1093/pcp/pcy120 pmid: 30107538 |
[20] |
ZHANG Q, VAN WIJK R, SHAHBAZ M, ROELS W, SCHOOTEN B V, VERMEER J E M, ZARZA X, GUARDIA A, SCUFFI D, GARCÍA-MATA C, LAHA D, WILLIAMS P, WILLEMS L A J, LIGTERINK W, HOFFMANN-BENNING S, GILLASPY G, SCHAAF G, HARING M A, LAXALT A M, MUNNIK T. Arabidopsis phospholipase C3 is involved in lateral root initiation and ABA responses in seed germination and stomatal closure. Plant and Cell Physiology, 2018,59(3):469-486.
doi: 10.1093/pcp/pcx194 pmid: 29309666 |
[21] |
VAN WIJK R, ZHANG Q, ZARZA X, LAMERS M, MARQUEZ F R, GUARDIA A, SCUFFI D, GARCÍA-MATA C, LIGTERINK W, HARING M A, LAXALT A M, MUNNIK T. Role for Arabidopsis PLC7 in stomatal movement, seed mucilage attachment, and leaf serration. Frontiers in Plant Science, 2018,9:1721.
doi: 10.3389/fpls.2018.01721 pmid: 30542361 |
[22] |
SINGH A, KANWAR P, PANDEY A, TYAGI A K, SOPORY S K, KAPOOR S, PANDEY G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE, 2013,8(4):e62494.
doi: 10.1371/journal.pone.0062494 pmid: 23638098 |
[23] |
SINGH A, BHATNAGAR N, PANDEY A, PANDEY G K. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium, 2015,58(2):139-146.
doi: 10.1016/j.ceca.2015.04.003 pmid: 25933832 |
[24] |
POKOTYLO I, KOLESNIKOV Y, KRAVETS V, ZACHOWSKI A, RUELLAND E. Plant phosphoinositide-dependent phospholipases C: Variations around a canonical theme. Biochimie, 2014,96:144-157.
doi: 10.1016/j.biochi.2013.07.004 pmid: 23856562 |
[25] |
MELIN P M, SOMMARIN M, SANDELIUS A S, JERGIL B. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes . FEBS Letters, 1987,223(1):87-91.
doi: 10.1016/0014-5793(87)80515-x pmid: 2822482 |
[26] |
MELIN P M, PICAL C, JERGIL B, SOMMARIN M. Polyphosphoinositide phospholipase C in wheat root plasma membranes, partial purification and characterization. Biochimica et Biophysica Acta, 1992,1123(2):163-169.
doi: 10.1016/0005-2760(92)90107-7 pmid: 1310875 |
[27] |
PICAL C, SANDELIUS A S, MELIN P M, SOMMARIN M. Polyphosphoinositide phospholipase C in plasma membranes of wheat (Triticum aestivum L.): Orientation of active site and activation by Ca and Mg. Plant Physiology, 1992,100(3):1296-1303.
doi: 10.1104/pp.100.3.1296 pmid: 16653120 |
[28] |
ZHANG K, JIN C, WU L, HOU M, DOU S, PAN Y. Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS ONE, 2014,9(8):e105061.
doi: 10.1371/journal.pone.0105061 pmid: 25121594 |
[29] | 吴少辉, 张学品, 杨洪强, 冯伟森. GS旱地小麦新品种-洛旱7号. 中国农业科技导报, 2009,11(S2):118-120. |
WU S H, ZHANG X P, YANG H Q, FENG W S. GS dryland wheat new variety-luohan 7. Journal of Agricultural Science and Technology, 2009,11(S2):118-120. (in Chinese) | |
[30] | 张明明, 董宝娣, 乔匀周, 赵欢, 刘孟雨, 陈骎骎, 杨红, 郑鑫. 播期、播量对旱作小麦‘小偃60’生长发育、产量及水分利用的影响. 中国生态农业学报, 2016,24(8):1095-1102. |
ZHANG M M, DONG B D, QIAO Y Z, ZHAO H, LIU M Y, CHEN Q Q, YANG H, ZHEN X. Effects of sowing date and seeding density on growth, yield and water use efficiency of ‘Xiaoyan 60’ wheat under rainfed condition. Chinese Journal of Eco-Agriculture, 2016,24(8):1095-1102. (in Chinese) | |
[31] |
TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008,46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015 |
[32] |
SINGH A, KANWAR P, PANDEY A, TYAGI A K, SOPORY S K, KAPOOR S, PANDEY G K. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE, 2013,8(4):e62494.
doi: 10.1371/journal.pone.0062494 pmid: 23638098 |
[33] |
VOSSEN J H, ABD-EL-HALIEM A, FRADIN E F, VAN DEN BERG G C M, EKENGREN S K, MEIJER H J G, SEIFI A, BAI Y, TEN HAVE A, MUNNIK T, THOMMA B P H J, JOOSTEN M H A J. Identification of tomato phosphatidylinositol-specific phospholipase- C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. The Plant Journal: for Cell and Molecular Biology, 2010,62(2):224-239.
doi: 10.1111/j.1365-313X.2010.04136.x |
[34] |
KHALIL H B, WANG Z, WRIGHT J A, RALEVSKI A, DONAYO A O, GULICK P J. Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1. Plant Molecular Biology, 2011,77(1/2):145-158.
doi: 10.1007/s11103-011-9801-1 |
[35] |
MORRAN S, EINI O, PYVOVARENKO T, PARENT B, SINGH R, ISMAGUL A, ELIBY S, SHIRLEY N, LANGRIDGE P, LOPATO S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011,9(2):230-249.
doi: 10.1111/j.1467-7652.2010.00547.x |
[36] |
HIRAYAMA T, OHTO C, MIZOGUCHI T, SHINOZAKI K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(9):3903-3907.
doi: 10.1073/pnas.92.9.3903 pmid: 7732004 |
[37] |
LIN W H, YE R, MA H, XU Z H, XUE H W. DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Research, 2004,14(1):34-45.
doi: 10.1038/sj.cr.7290200 pmid: 15040888 |
[38] |
TASMA I M, BRENDEL V, WHITHAM S A, BHATTACHARYYA M K. Expression and evolution of the phosphoinsitide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008,46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015 |
[39] |
ZHAI S M, SUI Z H, YANG A F, ZHANG J R. Characterization of a novel phosphoinositide-speciWc phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnology Letters, 2005,27(11):799-804.
doi: 10.1007/s10529-005-5802-y |
[40] |
DARWISH E, TESTERINK C, KHALIL M, EL-SHIHY O, MUNNIK T. Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiology, 2009,50(5):986-997.
doi: 10.1093/pcp/pcp051 pmid: 19369274 |
[41] | 邓先俊. 水稻磷脂酰肌醇特异性磷脂酶C4(OsPLC4)调节水稻渗透胁迫响应及生长发育[D]. 武汉: 华中农业大学, 2018. |
DENG X J. Phosphatidylinositol-specific phosphatidylase C 4 (OsPLC4) regulates osmotic stress response and growth and development in rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[42] |
GEORGES F, DAS S, RAY H, BOCK C, NOKHRINA K, KOLLA A, KELLER W. Over-expression of Brassica napus phosphatidylinositol- phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant, Cell and Environment, 2009,32(12):1664-1681.
doi: 10.1111/j.1365-3040.2009.02027.x pmid: 19671099 |
[43] |
杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018,53(5):581-593.
doi: 10.11983/CBB17143 |
DU K X, SHEN W H, DONG A W. Advances in epigenetic regulation of abiotic stress response in plants. Chinese Bulletin of Botany, 2018,53(5):581-593. (in Chinese)
doi: 10.11983/CBB17143 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[5] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[6] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[7] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[10] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[11] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[12] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[13] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[14] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[15] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
|