| [1] |
DOMBROVSKY A, TRAN-NGUYEN L T T, JONES R A C. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathology, 2017, 55: 231-256.
doi: 10.1146/annurev-phyto-080516-035349
pmid: 28590876
|
| [2] |
LING K S, LI R, ZHANG W. First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Disease, 2014, 98(5): 701.
|
| [3] |
周红珍, 张志勇, 彭辉. 黄瓜绿斑驳花叶病毒病的发生症状及防控措施. 现代农业科技, 2013(18): 138, 140.
|
|
ZHOU H Z, ZHANG Z Y, PENG H. Occurrence symptoms and control measures of cucumber green mottle mosaic virus disease. Modern Agricultural Science and Technology, 2013(18): 138, 140. (in Chinese)
|
| [4] |
林燚, 杨瑜斌, 王驰, 王文华, 毛玲荣. 温台地区西瓜发生黄瓜绿斑驳花叶病毒病调查初报. 浙江农业科学, 2012(1): 83-85.
|
|
LIN Y, YANG Y B, WANG C, WANG W H, MAO L R. Preliminary report on the occurrence of cucumber green mottle mosaic virus disease on watermelon in Wentai region. Journal of Zhejiang Agricultural Sciences, 2012(1): 83-85. (in Chinese)
|
| [5] |
UGAKI M, TOMIYAMA M, KAKUTANI T, HIDAKA S, KIGUCHI T, NAGATA R, SATO T, MOTOYOSHI F, NISHIGUCHI M. The complete nucleotide sequence of cucumber green mottle mosaic virus (SH strain) genomic RNA. Journal of General Virology, 1991, 72(7): 1487-1495.
doi: 10.1099/0022-1317-72-7-1487
|
| [6] |
YOO Y H, HONG W J, JUNG K H. A systematic view exploring the role of chloroplasts in plant abiotic stress responses. BioMed Research International, 2019, 2019: 6534745.
|
| [7] |
NOMURA H, KOMORI T, UEMURA S, KANDA Y, SHIMOTANI K, NAKAI K, FURUICHI T, TAKEBAYASHI K, SUGIMOTO T, SANO S, SUWASTIKA I N, FUKUSAKI E, YOSHIOKA H, NAKAHIRA Y, SHIINA T. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature Communications, 2012, 3: 926.
doi: 10.1038/ncomms1926
|
| [8] |
SERRANO I, AUDRAN C, RIVAS S. Chloroplasts at work during plant innate immunity. Journal of Experimental Botany, 2016, 67(13): 3845-3854.
doi: 10.1093/jxb/erw088
pmid: 26994477
|
| [9] |
SOWDEN R G, WATSON S J, JARVIS P. The role of chloroplasts in plant pathology. Essays in Biochemistry, 2018, 62(1): 21-39.
doi: 10.1042/EBC20170020
pmid: 29273582
|
| [10] |
DE TORRES ZABALA M, LITTLEJOHN G, JAYARAMAN S, STUDHOLME D, BAILEY T, LAWSON T, TILLICH M, LICHT D, BÖLTER B, DELFINO L, TRUMAN W, MANSFIELD J, SMIRNOFF N, GRANT M. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 2015, 1: 15074.
doi: 10.1038/nplants.2015.74
pmid: 27250009
|
| [11] |
WANG X T, JIANG Z H, YUE N, JIN X J, ZHANG X, LI Z L, ZHANG Y L, WANG X B, HAN C G, YU J L, LI D W. Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. The EMBO Journal, 2021, 40(16): e107660.
doi: 10.15252/embj.2021107660
|
| [12] |
BHATTACHARYYA D, CHAKRABORTY S. Chloroplast: The Trojan horse in plant-virus interaction. Molecular Plant Pathology, 2018, 19(2): 504-518.
doi: 10.1111/mpp.12533
pmid: 28056496
|
| [13] |
MEDINA-PUCHE L, TAN H, DOGRA V, WU M S, ROSAS-DIAZ T, WANG L P, DING X, ZHANG D, FU X, KIM C, LOZANO-DURAN R. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell, 2020, 182(5): 1109-1124.
doi: 10.1016/j.cell.2020.07.020
|
| [14] |
SIROHIWAL A, PANTAZIS D A. Functional water networks in fully hydrated photosystem II. Journal of the American Chemical Society, 2022, 144(48): 22035-22050.
doi: 10.1021/jacs.2c09121
|
| [15] |
BARTHEL S, BERNÁT G, SEIDEL T, RUPPRECHT E, KAHMANN U, SCHNEIDER D. Thylakoid membrane maturation and PSII activation are linked in greening Synechocystis sp. PCC 6803 cells. Plant Physiology, 2013, 163(2): 1037-1046.
doi: 10.1104/pp.113.224428
|
| [16] |
KONG L F, WU J X, LU L N, XU Y, ZHOU X P. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 2014, 7(4): 691-708.
doi: 10.1093/mp/sst158
pmid: 24214893
|
| [17] |
ABBINK T E, PEART J R, MOS T N, BAULCOMBE D C, BOL J F, LINTHORST H J. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology, 2002, 295(2): 307-319.
doi: 10.1006/viro.2002.1332
pmid: 12033790
|
| [18] |
GENG C, YAN Z Y, CHENG D J, LIU J, TIAN Y P, ZHU C X, WANG H Y, LI X D. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Scientific Reports, 2017, 7: 43455.
doi: 10.1038/srep43455
pmid: 28230184
|
| [19] |
BALASUBRAMANIAM M, KIM B S, HUTCHENS-WILLIAMS H M, LOESCH-FRIES L S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Molecular Plant-Microbe Interactions, 2014, 27(10): 1107-1118.
doi: 10.1094/MPMI-02-14-0035-R
pmid: 24940990
|
| [20] |
HORNÍČÁKOVÁ M, KOHOUTOVÁ J, SCHLAGNITWEIT J, WOHLSCHLAGER C, ETTRICH R, FIALA R, SCHOEFBERGER W, MÜLLER N. Backbone assignment and secondary structure of the PsbQ protein from photosystem II. Biomolecular NMR Assignments, 2011, 5(2): 169-175.
doi: 10.1007/s12104-011-9293-6
pmid: 21259076
|
| [21] |
ALLAHVERDIYEVA Y, SUORSA M, ROSSI F, PAVESI A, KATER M M, ANTONACCI A, TADINI L, PRIBIL M, SCHNEIDER A, WANNER G, LEISTER D, ARO E M, BARBATO R, PESARESI P. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen- evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. The Plant Journal, 2013, 75(4): 671-684.
doi: 10.1111/tpj.2013.75.issue-4
|
| [22] |
MARTIN W F, CERFF R. Physiology, phylogeny, early evolution, and GAPDH. Protoplasma, 2017, 254(5): 1823-1834.
doi: 10.1007/s00709-017-1095-y
pmid: 28265765
|
| [23] |
PÉREZ-BUENO M L, BARÓN M, GARCÍA-LUQUE I. PsbO, PsbP, and PsbQ of photosystem II are encoded by gene families in Nicotiana benthamiana. . Structure and functionality of their isoforms. Photosynthetica, 2011, 49(4): 573-580.
|
| [24] |
ZHOU F H, FENG X, JIANG A L, ZHU P F. Mutations in the BoPQL2 gene enhance the sensitivity to low temperature and affect the leaf margin coloration in ornamental kale. Scientia Horticulturae, 2024, 323: 112540.
doi: 10.1016/j.scienta.2023.112540
|
| [25] |
ZAGORŠCAK M, ABDELHAKIM L, RODRIGUEZ-GRANADOS N Y, ŠIROKÁ J, GHATAK A, BLEKER C, BLEJEC A, ZRIMEC J, NOVÁK O, PĚNČÍK A, et al. Integration of multi-omics data and deep phenotyping provides insights into responses to single and combined abiotic stress in potato. Plant Physiology, 2025, 197(4): kiaf126.
|
| [26] |
BERTAMINI M, MUTHUCHELIAN K, RUBINIGG M, ZORER R, NEDUNCHEZHIAN N. Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiology and Biochemistry, 2005, 43(7): 693-699.
doi: 10.1016/j.plaphy.2005.06.001
|
| [27] |
姜兴林, 于连伟, 付涵, 艾妞, 崔荧钧, 李好海, 夏子豪, 袁虹霞, 李洪连, 杨雪, 施艳. 转录因子NbMYB1R1通过促进活性氧积累抑制病毒侵染. 中国农业科学, 2024, 57(8): 1490-1505. doi: 10.3864/j.issn.0578-1752.2024.08.006.
|
|
JIANG X L, YU L W, FU H, AI N, CUI Y J, LI H H, XIA Z H, YUAN H X, LI H L, YANG X, SHI Y. The transcription factor NbMYB1R1 inhibits viral infection by promoting ROS accumulation. Scientia Agricultura Sinica, 2024, 57(8): 1490-1505. doi: 10.3864/j.issn.0578-1752.2024.08.006. (in Chinese)
|
| [28] |
RODRÍGUEZ-HERVA J J, GONZÁLEZ-MELENDI P, CUARTAS- LANZA R, ANTÚNEZ-LAMAS M, RÍO-ÁLVAREZ I, LI Z, LÓPEZ-TORREJÓN G, DÍAZ I, DEL POZO J C, CHAKRAVARTHY S, COLLMER A, RODRÍGUEZ-PALENZUELA P, LÓPEZ-SOLANILLA E. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 2012, 14(5): 669-681.
doi: 10.1111/cmi.2012.14.issue-5
|
| [29] |
HUANG C P, PENG J B, ZHANG W, CHETHANA T, WANG X C, WANG H, YAN J Y. LtGAPR1 is a novel secreted effector from Lasiodiplodia theobromae that interacts with NbPsQ2 to negatively regulate infection. Journal of Fungi, 2023, 9(2): 188.
doi: 10.3390/jof9020188
|
| [30] |
ZHAI Y S, YUAN Q, QIU S S, LI M M, ZHENG H Y, WU G W, LU Y W, PENG J J, RAO S F, CHEN J P, YAN F. Turnip mosaic virus impairs perinuclear chloroplast clustering to facilitate viral infection. Plant, Cell and Environment, 2021, 44(11): 3681-3699.
doi: 10.1111/pce.v44.11
|
| [31] |
LI Z D, LI C Y, FU S, LIU Y, XU Y, WU J X, WANG Y Q, ZHOU X P. NSvc4 encoded by rice stripe virus targets host chloroplasts to suppress chloroplast-mediated defense. Viruses, 2022, 14(1): 36.
doi: 10.3390/v14010036
|
| [32] |
PFANNSCHMIDT T. Chloroplast redox signals: How photosynthesis controls its own genes. Trends in Plant Science, 2003, 8(1): 33-41.
doi: 10.1016/s1360-1385(02)00005-5
pmid: 12523998
|
| [33] |
HUANG T Z, ZHANG X S, WANG Q C, GUO Y R, XIE H, LI L, ZHANG P, LIU J N, QIN P. Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply. BMC Plant Biology, 2022, 22(1): 604.
doi: 10.1186/s12870-022-03928-8
pmid: 36539684
|
| [34] |
于力, 郭世荣, 朱为民, 阎君, 黑银秀. 番茄黄化曲叶病毒对番茄叶片光合特性和叶绿体超微结构的影响. 西北植物学报, 2011, 31(7): 1355-1359.
|
|
YU L, GUO S R, ZHU W M, YAN J, HEI Y X. Effects of tomato yellow leaf curl virus on photosynthetic characteristics and chloroplast ultra-structure of the tomato leaves. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1355-1359. (in Chinese)
|
| [35] |
易龙, 陈毅群, 李双花, 黄爱军. 柑橘衰退病毒侵染对‘赣南早’脐橙植株组织结构及光合作用的影响. 果树学报, 2020, 37(4): 574-581.
|
|
YI L, CHEN Y Q, LI S H, HUANG A J. Structural and photosynthetic changes in ‘Gannanzao’ navel orange plants infected with citrus tristeza virus. Journal of Fruit Science, 2020, 37(4): 574-581. (in Chinese)
|