[1] |
LIU H, WANG Z H, YU R, LI F C, LI K Y, CAO H B, YANG N, LI M H, DAI J, ZAN Y L, et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agriculture, Ecosystems & Environment, 2016, 224: 1-11.
|
[2] |
IGREJAS G, BRANLARD G. The importance of wheat. Wheat Quality for Improving Processing and Human Health. Cham: Springer International Publishing, 2020: 1-7.
|
[3] |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型. 智慧农业(中英文), 2024, 6(1): 147-157.
|
|
YANG F, YAO X T. Lightweight model of wheat leaf pest detection based on improved YOLOv8. Smart Agriculture, 2024, 6(1): 147-157. (in Chinese)
|
[4] |
余卓炫. 基于Mask R-CNN的小麦叶片展开检测系统设计[D]. 雅安: 四川农业大学, 2023.
|
|
YU Z X. Design of detection system for wheat leaf unfoldment based on Mask R-CNN[D]. Yaan: Sichuan Agricultural University, 2023. (in Chinese)
|
[5] |
张洁, 林立杰, 苏红玉, 杨予熙, 吴波明. 基于YOLOv8s-seg的水稻叶片检测研究//中国植物病理学会. 中国植物病理学会2024年学术年会论文集, 2024: 377.
|
|
ZHANG J, LIN L J, SUN H Y, YANG Y X, WU B M. Study on rice leaf detection based on YOLOv8s-seg //Plant Pathology Society of China. Proceedings of the 2024 Annual Conference of the Chinese Society of Plant Pathology, 2024: 377. (in Chinese)
|
[6] |
安江勇, 黎万义, 李茂松. 基于Mask R-CNN的玉米干旱卷曲叶片检测. 中国农业信息, 2019, 31(5): 66-74.
|
|
AN J Y, LI W Y, LI M S. Identification of maize drought rolled leaves based on Mask R-CNN model. China Agricultural Informatics, 2019, 31(5): 66-74. (in Chinese)
|
[7] |
凌慕菲, 杨冬风. 基于改进YOLOv5s模型的玉米叶片病害识别. 农业灾害研究, 2023, 13(8): 126-128.
|
|
LING M F, YANG D F. Maize leaf disease recognition based on improved YOLOv5s model. Agricultural Disaster Research, 2023, 13(8): 126-128. (in Chinese)
|
[8] |
杨琳琳, 王建坤, 别书凡, 白振江, 常金攀, 贺小梅, 李文峰, 施杰. 基于计算机视觉的玉米叶片表型检测方法研究. 江苏农业科学, 2023, 51(16): 195-202.
|
|
YANG L L, WANG J K, BIE S F, BAI Z J, CHANG J P, HE X M, LI W F, SHI J. Study on maize leaf phenotype detection method based on computer vision. Jiangsu Agricultural Sciences, 2023, 51(16): 195-202. (in Chinese)
|
[9] |
赵弋秋. 基于无人机影像的大豆苗情快速检测方法研究[D]. 郑州: 河南农业大学, 2022.
|
|
ZHAO Y Q. Soybean's rapid detection method based on the UAV image research[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese)
|
[10] |
侯依廷, 饶元, 宋贺, 聂振君, 王坦, 何豪旭. 复杂大田场景下基于改进YOLOv8的小麦幼苗期叶片数快速检测方法. 智慧农业(中英文), 2024, 6(4): 128-137.
|
|
HOU Y T, RAO Y, SONG H, NIE Z J, WANG T, HE H X. A rapid detection method for wheat seedling leaf number in complex field scenarios based on improved YOLOv8. Smart Agriculture, 2024, 6(4): 128-137. (in Chinese)
|
[11] |
邢忠健. 基于改进YOLOv5s模型的玉米叶片病害检测方法研究与应用[D]. 合肥: 安徽农业大学, 2023.
|
|
XING Z J. Research and application of maize leaf disease detection method based on improved YOLOv5s model[D]. Hefei: Anhui Agricultural University, 2023. (in Chinese)
|
[12] |
LI Y X, JIANG Z C, ZHANG Z, LI H, ZHANG M. SeedingsNet:Field wheat seedling density detection based on deep learning. Sensing Technologies for Field and In-House Crop Production. Singapore: Springer Nature Singapore, 2023: 77-88.
|
[13] |
刘家俊, 苏润琦, 吴麒, 许吉如. 基于YOLO模型的玉米叶片病虫害检测与识别研究. 化学工程与装备, 2023(6): 31-34.
|
|
LIU J J, SU R Q, WU Q, XU J R. Study on detection and identification of maize leaf diseases and insect pests based on YOLO model. Chemical Engineering & Equipment, 2023(6): 31-34. (in Chinese)
|
[14] |
MA H, ZHAO W, JI J, JIN X, SHI Y, ZHENG F, LI N. A quick counting method for winter wheat at the seedling stage in fields based on an improved yolov4 model. The Journal of Animal and Plant Sciences, 2022(6): 1666-1681.
|
[15] |
ZHANG Y, WANG H F, XU R X, YANG X Y, WANG Y C, LIU Y L. High-precision seedling detection model based on multi-activation layer and depth-separable convolution using images acquired by drones. Drones, 2022, 6(6): 152.
|
[16] |
GUO X Q, GE Y J, LIU F Q, YANG J J. Identification of maize and wheat seedlings and weeds based on deep learning. Frontiers in Earth Science, 2023, 11: 1146558.
|
[17] |
LIU T, YANG T L, LI C Y, LI R, WU W, ZHONG X C, SUN C M, GUO W S. A method to calculate the number of wheat seedlings in the 1st to the 3rd leaf growth stages. Plant Methods, 2018, 14: 101.
doi: 10.1186/s13007-018-0369-5
pmid: 30473722
|
[18] |
LIU C, YIN Y Y, QIAN R, WANG S H, XIA J J, ZHANG J K, ZHAO L Q. Enhanced winter wheat seedling classification and identification using the SETFL-ConvNeXt model: Addressing overfitting and optimizing training strategies. Agronomy, 2024, 14(9): 1914.
|
[19] |
LI Y L, ZHAN X H, LIU S Y, LU H, JIANG R B, GUO W, CHAPMAN S, GE Y F, SOLAN B, DING Y F, BARET F. Self-supervised plant phenotyping by combining domain adaptation with 3D plant model simulations: application to wheat leaf counting at seedling stage. Plant Phenomics, 2023, 5: 0041.
|
[20] |
KONG S L, LI J, ZHAI Y T, GAO Z Y, ZHOU Y, XU Y L. Real-time detection of crops with dense planting using deep learning at seedling stage. Agronomy, 2023, 13(6): 1503.
|
[21] |
CUI J R, ZHENG H, ZENG Z W, YANG Y L, MA R J, TIAN Y Y, TAN J W, FENG X, QI L. Real-time missing seedling counting in paddy fields based on lightweight network and tracking-by-detection algorithm. Computers and Electronics in Agriculture, 2023, 212: 108045.
|
[22] |
许鑫, 李海洋, 冯洋洋, 马新明, 沈帅杰, 乔新昱. 基于K-means和Harris角点检测的麦苗识别研究. 河南农业科学, 2020, 49 (12): 164-171.
|
|
XU X, LI H Y, FENG Y Y, MA X M, SHEN S J, QIAO X Y. Wheat seedling identification based on K-means and Harris corner detection. Journal of Henan Agricultural Sciences, 2020, 49(12): 164-171. (in Chinese)
|
[23] |
ZHUANG F Z, QI Z Y, DUAN K Y, XI D B, ZHU Y C, ZHU H S, XIONG H, HE Q. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2021, 109(1): 43-76.
|
[24] |
CHEN Y F, ZHANG C Y, CHEN B, HUANG Y Y, SUN Y F, WANG C M, FU X J, DAI Y X, QIN F W, PENG Y, GAO Y. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Computers in Biology and Medicine, 2024, 170: 107917.
|
[25] |
XU W, WAN Y. Ela: Efficient local attention for deep convolutional neural networks. arXiv Preprint arXiv: 2403.01123, 2024.
|
[26] |
ZHANG H, XU C, ZHANG S J. Inner-IoU: More effective intersection over union loss with auxiliary bounding box. arXiv preprint arXiv:2311.02877, 2023.
|
[27] |
REN S Q, HE K M, GIRSHICK R, SUN J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[28] |
|
[29] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 7464-7475.
|
[30] |
JOCHER G, CHAURASIA A, QIU J. (2023). Ultralytics YOLO (version 8.0.0)[Computer software]. https://github.com/ultralytics/ultralytics.
|
[31] |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024.
|
[32] |
LIN T Y, DOLLÁR P, GIRSHICK R, HE K M, HARIHARAN B, BELONGIE S. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 936-944.
|
[33] |
TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection. // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 10778-10787.
|
[34] |
LIU S, QI L, QIN H F, SHI J P, JIA J Y. Path aggregation network for instance segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 8759-8768.
|
[35] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717.
|
[36] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141.
|
[37] |
WOO S, PARK J, LEE J Y, KWEON I S. CBAM: Convolutional block attention module.Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
[38] |
SELVARAJU R R, COGSWELL M, DAS A, VEDANTAM R, PARIKH D, BATRA D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128(2): 336-359.
|