中国农业科学 ›› 2025, Vol. 58 ›› Issue (13): 2591-2603.doi: 10.3864/j.issn.0578-1752.2025.13.008

• 植物保护 • 上一篇    下一篇

油茶壳杀黏虫活性成分鉴定及其作用机制

詹丽1(), 梁宗锁2, 于靖3, 卢俊1, 梁倩1()   

  1. 1 西南林业大学生物与食品工程学院,昆明 650224
    2 浙江理工大学生命科学与医药学院,杭州 310018
    3 海南大学热带农林学院,海南儋州 571737
  • 收稿日期:2025-03-21 接受日期:2025-05-03 出版日期:2025-07-01 发布日期:2025-07-05
  • 通信作者:
    梁倩,E-mail:
  • 联系方式: 詹丽,E-mail:2859202094@qq.com。
  • 基金资助:
    云南省教育厅科学研究基金(2024Y578); 浙江省尖兵领雁研发攻关计划(2022C02023); 云南省农业基础研究联合专项面上项目(202401BD070001-105)

Insecticidal Active Component Identification of Camellia oleifera Shell Against Mythimna separata and Its Action Mechanism

ZHAN Li1(), LIANG ZongSuo2, YU Jing3, LU Jun1, LIANG Qian1()   

  1. 1 College of Biology and Food Engineering, Southwest Forestry University, Kunming 650224
    2 College of Life Sciences and Medicine, Zhejiang Science and Technology University, Hangzhou 310018
    3 College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, Hainan
  • Received:2025-03-21 Accepted:2025-05-03 Published:2025-07-01 Online:2025-07-05

摘要:

【目的】 明确油茶副产物油茶壳对黏虫(Mythimna separata)的杀虫活性成分及作用机制,为黏虫植物源杀虫剂的开发提供依据。【方法】 通过浸虫法和浸叶法测定油茶壳石油醚、三氯甲烷、乙酸乙酯和水提取物对黏虫的杀虫活性;石油醚提取物经硅胶柱层析分离,气相色谱-质谱分析,确定其活性成分;通过非靶向代谢组学技术,对黏虫的差异代谢物进行注释、筛选和分析。【结果】 油茶壳石油醚提取物对黏虫的触杀活性最好,其对黏虫1、3、5和7 d触杀活性的LC50分别为9.53、8.00、7.51和7.02 mg·mL-1。油茶壳石油醚提取物经硅胶柱层析分离,得到20个馏分,馏分6对黏虫的触杀活性最好,1、3、5和7 d触杀活性的LC50分别为3.99、3.85、3.72和3.72 mg·mL-1。馏分6再分离,得到21个馏分,馏分6.4对黏虫的触杀活性最好;经气相色谱-质谱法分析,正十六烷(19.33%)、1-十六烯(14.21%)、二十八烷(4.03%)、十八烷(9.24%)、二氯菊酸(6.73%)、1-十八烯(7.27%)、二十四烷醇(3.87%)和异植醇(5.92%)为主要化合物,其中二氯菊酸对黏虫的触杀活性最好,1、3、5和7 d触杀活性的LC50分别为91.62、55.61、34.94和24.43 μg·mL-1,与阳性对照除虫菊酯的杀虫活性相当。通过非靶向代谢组学技术,筛选得到6个差异代谢物,其中云杉苷、大麻素、5-氟大麻素代谢物和己酰甘氨酸显著上调,而4-乙基-2,6-二羟基苯基硫酸氢酯和N-二十五酰甘氨酸显著下调。这些差异代谢物主要富集在辅因子的生物合成、烟酸和烟酰胺代谢、色氨酸代谢、泛醌和其他萜类醌的生物合成4个信号通路中。【结论】 油茶壳中对黏虫具有良好杀虫活性的化合物为二氯菊酸,研究结果可为黏虫的生物防治及油茶壳高值化利用提供新方向。

关键词: 油茶壳, 黏虫, 触杀活性, 二氯菊酸, 代谢组学

Abstract:

【Objective】 The objective of this study is to clarify the insecticidal active component and mechanism of Camellia oleifera shell on Mythimna separate, and to provide a basis for the development of botanical insecticides for M. separata. 【Method】 The insecticidal activity of petroleum ether, chloroform, ethyl acetate, and aqueous extracts of C. oleifera shell against 3rd instar larvae of M. separata was evaluated using the immersion and leaf-dipping methods. The petroleum ether extract was subjected to silica gel column chromatography for separation, followed by gas chromatography-mass spectrometry (GC-MS) analysis to identify the active components. Furthermore, a non-targeted metabolomics approach was employed to annotate, screen, and analyze differential metabolites in M. separata. 【Result】 The petroleum ether extract of C. oleifera shell exhibited the highest contact toxicity against M. separata, with LC50 values of 9.53, 8.00, 7.51, and 7.02 mg·mL-1 on 1, 3, 5, and 7 d, respectively. The petroleum ether extract was separated by silica gel column chromatography to obtain 20 fractions, among which fraction 6 showed the best contact toxicity against M. separata, with LC50 values of 3.99, 3.85, 3.72, and 3.72 mg·mL-1 on 1, 3, 5, and 7 d, respectively. Further separation of fraction 6 yielded 21 subfractions, with subfraction 6.4 demonstrating the highest contact toxicity. GC-MS analysis identified hexadecane (19.33%), 1-hexadecene (14.21%), octacosane (4.03%), octadecane (9.24%), dichlorochrysanthemic acid (6.73%), 1-octadecene (7.27%), 1-tetracosanol (3.87%) and isophytol (5.92%) as the main compounds. Among these, dichlorochrysanthemic acid exhibited the strongest contact toxicity against M. separata, with LC50 values of 91.62, 55.61, 34.94, and 24.43 μg·mL-1 on 1, 3, 5, and 7 d, respectively. Its insecticidal efficacy was comparable to that of the positive control, pyrethrin. Non-targeted metabolomics analysis identified six differential metabolites, among which piceid, cannabinoid, 5-fluoro-cannabinoid metabolite, and caproylglycine were significantly upregulated, while 4-ethyl-2,6-dihydroxyphenyl sulfate and N-pentacosanoylglycine were significantly downregulated. These differential metabolites were primarily enriched in four metabolic pathways: cofactor biosynthesis, tryptophan metabolism, niacin and nicotinamide metabolism, ubiquinone and terpenoid-quinone biosynthesis. 【Conclusion】 Dichlorochrysanthemic acid from C. oleifera shell extract exhibits insecticidal activity against M. separata, providing a new avenue for the biological control of M. separata and the high-value utilization of C. oleifera shell.

Key words: Camellia oleifera shell, Mythimna separata, contact toxicity, dichlorochrysanthemic acid, metabolomics