[1] |
WILLIAMSON P R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: Identification as a laccase. Journal of Bacteriology, 1994, 176(3): 656-664.
doi: 10.1128/jb.176.3.656-664.1994
|
[2] |
ABERA W, SHIMELIS H, DERERA J, WORKU M, LAING M. Northern leaf blight response of elite maize inbred lines adapted to the mid-altitude sub-humid tropics. Cereal Research Communications, 2016, 44(1): 141-152.
doi: 10.1556/0806.43.2015.037
|
[3] |
DONG J G, FAN Y S, GUI X M, AN X L, MA J F, DONG Z P. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in northern China. American Journal of Agricultural and Biological Sciences, 2008, 3(1): 389-398.
doi: 10.3844/ajabssp.2008.389.398
|
[4] |
TANG L, GAO Z G, YAO Y, LIU X. Identification and genetic diversity of formae speciales of Setosphaeria turcica in China. Plant Disease, 2015, 99(4): 482-487.
doi: 10.1094/PDIS-06-14-0570-RE
|
[5] |
NAVARRO B L, HANEKAMP H, KOOPMANN B, VON TIEDEMANN A. Diversity of expression types of Ht genes conferring resistance in maize to Exserohilum turcicum. Frontiers in Plant Science, 2020, 11: 607850.
doi: 10.3389/fpls.2020.607850
|
[6] |
NIEUWOUDT A, HUMAN M P, CRAVEN M, CRAMPTON B G. Genetic differentiation in populations of Exserohilum turcicum from maize and sorghum in South Africa. Plant Pathology, 2018, 67(7): 1483-1491.
doi: 10.1111/ppa.2018.67.issue-7
|
[7] |
杨耿斌. 黑龙江省北部玉米大斑病菌小种鉴定与育种材料抗大斑病特性分析[D]. 北京: 中国农业科学院, 2014.
|
|
YANG G B. Resistance analysis of breeding lines to northern corn leaf blight and identification of Exserohilum turcicum races in northern of Heilongjiang Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
|
[8] |
PEREZ-CUESTA U, APARICIO-FERNANDEZ L, GURUCEAGA X, MARTIN-SOUTO L, ABAD-DIAZ-DE-CERIO A, ANTORAN A, BULDAIN I, HERNANDO F L, RAMIREZ-GARCIA A, REMENTERIA A. Melanin and pyomelanin in Aspergillus fumigatus: From its genetics to host interaction. International Microbiology, 2020, 23(1): 55-63.
doi: 10.1007/s10123-019-00078-0
|
[9] |
LIN S Y, OKUDA S, IKEDA K, OKUNO T, TAKANO Y. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Molecular Plant-Microbe Interactions, 2012, 25(12): 1552-1561.
doi: 10.1094/MPMI-05-12-0131-R
|
[10] |
LÜ Z Y, KANG X, XIANG Z H, HE N J. Laccase gene Sh-lac is involved in the growth and melanin biosynthesis of Scleromitrula shiraiana. Phytopathology, 2017, 107(3): 353-361.
doi: 10.1094/PHYTO-04-16-0180-R
|
[11] |
EISENMAN H C, CASADEVALL A. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology, 2012, 93(3): 931-940.
doi: 10.1007/s00253-011-3777-2
pmid: 22173481
|
[12] |
JIN W S, LI J H, FENG H C, YOU S, ZHANG L Y, NORVIENYEKU J, HU K H, SUN S J, WANG Z H. Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae. International Journal of Molecular Sciences, 2018, 19(2): 471.
doi: 10.3390/ijms19020471
|
[13] |
SBAGHI M, JEANDET P, BESSIS R, LEROUX P. Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathology, 1996, 45(1): 139-144.
doi: 10.1046/j.1365-3059.1996.d01-101.x
|
[14] |
RUBERT J, RIGHETTI L, STRANSKA-ZACHARIASOVA M, DZUMAN Z, CHRPOVA J, DALL’ASTA C, HAJSLOVA J. Untargeted metabolomics based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins. Food Chemistry, 2017, 224(1): 423-431.
doi: 10.1016/j.foodchem.2016.11.132
|
[15] |
TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell, 1993, 5(11): 1575-1590.
|
[16] |
刘宁. 玉米大斑病菌漆酶基因家族鉴定及关键基因的功能解析[D]. 保定: 河北农业大学, 2019.
|
|
LIU N. Identification and functional analysis of laccase genes family in Setosphaeria turcica[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese)
|
[17] |
XIE M D, CHEN W Q, LAI X C, DAI H B, SUN H, ZHOU X Y, CHEN T B. Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. Environmental Pollution, 2019, 252: 1791-1800.
doi: 10.1016/j.envpol.2019.06.103
|
[18] |
CAI X N, DAVIS E J, BALLIF J, LIANG M X, BUSHMAN E, HAROLDSEN V, TORABINEJAD J, WU Y J. Mutant identification and characterization of the laccase gene family in Arabidopsis. Journal of Experimental Botany, 2006, 57(11): 2563-2569.
doi: 10.1093/jxb/erl022
|
[19] |
CANERO D C, RONCERO M I. Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology, 2008, 98(5): 509-518.
doi: 10.1094/PHYTO-98-5-0509
|
[20] |
LIU N, CAO Z Y, CAO K K, MA S X, GONG X D, JIA H, DAI D Q, DONG J G. Identification of laccase-like multicopper oxidases from the pathogenic fungus Setosphaeria turcica and their expression pattern during growth and infection. European Journal of Plant Pathology, 2019, 153(4): 1149-1163.
doi: 10.1007/s10658-018-01632-8
|
[21] |
doi: 10.3864/j.issn.0578-1752.2013.05.007
|
|
WU N, LI Q W, CAO Z Y, ZHANG J, HAO Z M, DONG J G. Determination and characterization of extracellular melanin from Setosphaeria turcica and influencing factors of its production. Scientia Agricultura Sinica, 2013, 46(5): 927-933. doi: 10.3864/j.issn.0578-1752.2013.05.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.05.007
|
[22] |
doi: 10.3864/j.issn.0578-1752.2011.05.008
|
|
CAO Z Y, JIA H, ZHU X M, DONG J G. Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(5): 925-932. doi: 10.3864/j.issn.0578-1752.2011.05.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.05.008
|
[23] |
THOMPSON J E, FAHNESTOCK S, FARRALL L, LIAO D I, VALENT B, JORDAN D B. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. The Journal of Biological Chemistry, 2000, 275(45): 34867-34872.
doi: 10.1074/jbc.M006659200
|
[24] |
DULAL N, ROGERS A M, PROKO R, BIEGER B D, LIYANAGE R, KRISHNAMURTHI V R, WANG Y, EGAN M J. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. Journal of Cell Science, 2021, 134(5): jcs251298.
|
[25] |
贾慧, 郭丽婕, 曹志艳, 郑云梅. 玉米大斑病菌黑色素合成调控基因StMR1回复载体的构建. 江苏农业科学, 2015, 43(8): 24-27.
|
|
JIA H, GUO L J, CAO Z Y, ZHENG Y M. Construction of StMR1 restorer vector of melanin synthesis regulatory gene of Setosphaeria turcica. Jiangsu Agricultural Sciences, 2015, 43(8): 24-27. (in Chinese)
|
[26] |
SHEA J M, DEL POETA M. Lipid signaling in pathogenic fungi. Current Opinion in Microbiology, 2006, 9(4): 352-358.
pmid: 16798065
|
[27] |
赵珊, 仲伶俐, 秦琳, 黄世群, 李曦, 郑幸果, 雷欣宇, 雷绍荣, 郭灵安, 冯俊彦. 不同干燥方式对甘薯叶功能成分及抗氧化活性的影响. 中国农业科学, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014.
doi: 10.3864/j.issn.0578-1752.2021.21.014
|
|
ZHAO S, ZHONG L L, QIN L, HUANG S Q, LI X, ZHENG X G, LEI X Y, LEI S R, GUO L A, FENG J Y. Effects of different drying methods on functional components and antioxidant activity in sweet potato leaves. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663. doi: 10.3864/j.issn.0578-1752.2021.21.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.21.014
|
[28] |
MA S X, CAO K K, LIU N, MENG C, CAO Z Y, DAI D Q, JIA H, ZANG J P, LI Z Y, HAO Z M, GU S Q, DONG J G. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 2017, 121(6/7): 589-601.
doi: 10.1016/j.funbio.2017.04.003
|
[29] |
SCHARWEY M, TATSUTA T, LANGER T. Mitochondrial lipid transport at a glance. Journal of Cell Science, 2013, 126(23): 5317-5323.
|
[30] |
HIDALGO-VICO S, CASAS J, GARCÍA C, LILLO M P, ALONSO-MONGE R, ROMÁN E, PLA J. Overexpression of the white opaque switching master regulator Wor1 alters lipid metabolism and mitochondrial function in Candida albicans. Journal of Fungi, 2022, 8(10): 1028.
doi: 10.3390/jof8101028
|
[31] |
高欣. 磷脂类系列化合物对UGT酶抑制及其机制的研究[D]. 北京: 中国人民解放军军事医学科学院, 2015.
|
|
GAO X. The study of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) components inhibition to UDP- glucuronosyltransferases (UGTs) isoforms[D]. Beijing: Academy of Military Medical Sciences, 2015. (in Chinese)
|
[32] |
CHEN Y, LI B, CEN K, LU Y, ZHANG S, WANG C. Diverse effect of phosphatidylcholine biosynthetic genes on phospholipid homeostasis, cell autophagy and fungal developments in Metarhizium robertsii. Environmental Microbiology, 2018, 20(1): 293-304.
doi: 10.1111/emi.2018.20.issue-1
|