中国农业科学 ›› 2025, Vol. 58 ›› Issue (11): 2190-2205.doi: 10.3864/j.issn.0578-1752.2025.11.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

农田土壤固碳与温室气体排放计量研究进展

孙建飞1(), 程琨2()   

  1. 1 生态环境部南京环境科学研究所,南京 210042
    2 南京农业大学农业资源与生态环境研究所/江苏省有机固体废弃物资源化协同创新中心,南京 210095
  • 收稿日期:2024-09-02 接受日期:2024-10-09 出版日期:2025-06-01 发布日期:2025-06-09
  • 通信作者:
    程琨,E-mail:
  • 联系方式: 孙建飞,E-mail:sunjianfei@nies.org。
  • 基金资助:
    中央级公益性科研院所基本科研业务专项(GYZX240410); 国家自然科学基金(42277020); 国家自然科学基金(42407658)

A Review of Soil Carbon Sequestration and Greenhouse Gas Emissions Quantification in Cropland

SUN JianFei1(), CHENG Kun2()   

  1. 1 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042
    2 Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095
  • Received:2024-09-02 Accepted:2024-10-09 Published:2025-06-01 Online:2025-06-09

摘要:

农田作为陆地生态系统中重要的温室气体源和汇,其科学管理为减缓气候变化提供了重要潜力。开发农田土壤固碳和温室气体排放计量方法对于准确量化农业对碳中和战略的贡献至关重要,也是温室气体清单编制、固碳减排效应评估、自愿减排交易、涉碳相关认证的必然要求。本文系统梳理了农田土壤固碳与温室气体排放计量方法,对比了不同计量方法在数据需求、获取成本、估算精度等方面的差异及面临的挑战,重点探讨了这些方法在不同应用场景下的适用性及其优化路径。农田土壤固碳和温室气体排放计量方法主要包括两期差减法(仅针对土壤固碳)、数据集成法(仅针对土壤固碳)、参数法/排放因子法、经验模型和过程模型。两期差减法和数据集成法是采用实测数据直接估算土壤有机碳变化量的重要方法,但其估算精度直接受到两期数据的匹配程度以及数据量的影响。参数法/排放因子法能够以最少的数据需求估算土壤固碳和温室气体排放,其估算精度依赖于参数/排放因子的本土化及细化程度。由于方法的限制,参数法/排放因子法更适合在区域尺度下进行低分辨率的估算,而无法准确捕捉高分辨率下的空间变异。经验模型和过程模型综合考虑了气象、土壤和管理因素对土壤固碳和温室气体排放的影响,适用于高分辨率的空间模拟和田块尺度的计量。经验模型的性能依赖于建模数据库的数据数量、质量及变量筛选的准确性。相比之下,过程模型在参数本土优化的前提下能够捕捉复杂条件下土壤有机碳和温室气体的时空动态变化。鉴于不同方法面临的挑战,本文强调了在特定应用场景下平衡数据需求、成本及估算精度的重要性,并指出模型模拟法将成为未来农田碳计量的主要方法。如何针对不同应用场景,权衡数据需求、获取成本及估算精度以选取和研发适宜的计量方法是当前面临的重要挑战。为进一步提升计量准确性与适用性,未来研究应聚焦于构建完善的田间监测网络、推动标准化数据库建设及共享、深化排放因子的本土化与精细化,并探索机器学习在多算法集成和过程模型参数调优中的创新应用。

关键词: 土壤固碳, 温室气体, 农田, 排放因子, 模型模拟, 碳中和

Abstract:

As significant sources and sinks of greenhouse gases in terrestrial ecosystems, cropland can effectively mitigate climate change through scientific management practices. Developing methods for quantifying soil carbon sequestration and greenhouse gas emissions is crucial for accurately measuring the contribution of agriculture to carbon neutrality strategies. These methods are also essential for greenhouse gas inventory preparation, evaluating carbon sequestration and emission reduction effects, voluntary emission reduction trading, and carbon-related certification. This paper systematically reviewed the methods for quantifying soil carbon sequestration and greenhouse gas emissions in cropland, comparing the differences among various methods in terms of data requirements, acquisition costs, estimation accuracy, and the challenges faced. It focused on the applicability of these methods in different scenarios and their optimization pathways. The methods discussed for soil carbon sequestration and greenhouse gas emissions included the Two-Period Difference Method (for soil carbon sequestration only), Data Integration Method (for soil carbon sequestration only), Parameter Method/Emission Factor Method, Empirical Models, and Process Models. The Two-Period Difference Method and Data Integration Method estimate changed in soil organic carbon using empirical data, but their accuracy was directly affected by the matching of datasets and the amount of data. The Parameter Method/Emission Factor Method estimated soil carbon sequestration and greenhouse gas emissions with minimal data requirements, but its accuracy depended on the localization and refinement of parameters/emission factors. Due to these limitations, the Parameter Method/Emission Factor Method was more suitable for low-resolution estimates at regional scales and could not accurately capture high-resolution spatial variations. Empirical Models and Process Models considered the effects of meteorological, soil, and management factors on soil carbon sequestration and greenhouse gas emissions, making them suitable for high-resolution spatial simulations and field-scale measurements. The performance of empirical models depended on the quantity, quality, and accuracy of variable selection in the modeling database. In contrast, Process-based Models could capture the spatiotemporal dynamics of soil organic carbon and greenhouse gases under complex conditions, but required local parameter optimization for accurate performance. Given the challenges of different methods, this paper highlighted the importance of balancing data requirements, costs, and estimation accuracy in specific-scenarios. It noteed that model simulation methods would become the main trend in future agricultural carbon quantification. Addressing how to balance data requirements, acquisition costs, and estimation accuracy for different scenarios was a significant challenge. Future research should focus on building comprehensive field monitoring networks, promoting standardized database construction and sharing, deepening the localization and refinement of emission factors, and exploring innovative applications of machine learning in multi-algorithm integration and process model parameter adjustment.

Key words: soil carbon sequestration, greenhouse gas, cropland, emission factor, model simulation, carbon neutrality