[1] |
TIEMAN D M, ZEIGLER M, SCHMELZ E A, TAYLOR M G, BLISS P, KIRST M, KLEE H J. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 2006, 57(4): 887-896.
doi: 10.1093/jxb/erj074
pmid: 16473892
|
[2] |
ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO Q G, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249-261.e12.
|
[3] |
冯岩, 李朝平, 朱龙英, 刘雨婷, 杨学东, 张迎迎, 张辉, 朱为民. 番茄果实可溶性固形物研究进展. 分子植物育种, 2022, 20(15): 5158-5163.
|
|
FENG Y, LI C P, ZHU L Y, LIU Y T, YANG X D, ZHANG Y Y, ZHANG H, ZHU W M. Research progress of soluble solids content in tomato. Molecular Plant Breeding, 2022, 20(15): 5158-5163. (in Chinese)
|
[4] |
LUENGWILAI K, FIEHN O E, BECKLES D M. Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids. Journal of Agricultural and Food Chemistry, 2010, 58(22): 11790-11800.
|
[5] |
李君明, 徐和金, 周永健. 有关番茄果实中可溶性固形物和番茄红素的研究进展. 园艺学报, 2001, 28 (增刊): 661-668.
|
|
LI J M, XU H J, ZHOU Y J. The advance of the research on soluble solid and lycopene in tomato fruit. Acta Horticulturae Sinica, 2001, 28 (Suppl.): 661-668. (in Chinese)
|
[6] |
李守明, 王建江, 王诚军, 曾沂辉, 高明, 刘金虎, 祝晏兵. 我国加工番茄产业发展中的技术瓶颈与对策. 中国蔬菜, 2013, 7: 6-8.
|
|
LI S M, WANG J J, WANG C J, ZENG Y H, GAO M, LIU J H, ZHU Y B. Technical bottleneck and countermeasures in the development of processing tomato industry in China. Chinese Vegetables, 2013, 7: 6-8. (in Chinese)
|
[7] |
BAXTER C J, SABAR M, PAUL QUICK W, SWEETLOVE L J. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. Journal of Experimental Botany, 2005, 56(416): 1591-1604.
doi: 10.1093/jxb/eri154
pmid: 15851417
|
[8] |
ESHED Y, ZAMIR D. Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theoretical and Applied Genetics, 1994, 88(6): 891-897.
|
[9] |
GUR A, SEMEL Y, OSORIO S, FRIEDMANN M, SEEKH S, GHAREEB B, MOHAMMAD A, PLEBAN T, GERA G, FERNIE A R, ZAMIR D. Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theoretical and Applied Genetics, 2011, 122(2): 405-420.
doi: 10.1007/s00122-010-1456-9
pmid: 20872209
|
[10] |
ESHED Y, ZAMIR D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141(3): 1147-1162.
|
[11] |
BAXTER C J, CARRARI F, BAUKE A, OVERY S, HILL S A, QUICK P W, FERNIE A R, SWEETLOVE L J. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant & Cell Physiology, 2005, 46(3): 425-437.
|
[12] |
KANAYAMA Y. Sugar metabolism and fruit development in the tomato. The Horticulture Journal, 2017, 86(4): 417-425.
|
[13] |
BERNACCHI D, BECK-BUNN T, EMMATTY D, ESHED Y, INAI S, LOPEZ J, PETIARD V, SAYAMA H, UHLIG J, ZAMIR D, TANKSLEY S. Advanced back-cross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theoretical and Applied Genetics, 1998, 97(7): 1191-1196.
|
[14] |
LIPPMAN Z B, SEMEL Y, ZAMIR D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current Opinion in Genetics & Development, 2007, 17(6): 545-552.
|
[15] |
IKEDA H, HIRAGA M, SHIRASAWA K, NISHIYAMA M, KANAHAMA K, KANAYAMA Y. Analysis of a tomato introgression line, IL8-3, with increased Brix content. Scientia Horticulturae, 2013, 153: 103-108.
|
[16] |
GUR A, ZAMIR D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biology, 2004, 2(10): e245.
doi: 10.1371/journal.pbio.0020245
pmid: 15328532
|
[17] |
MUIR C D, MOYLE L C. Antagonistic epistasis for ecophysiological trait differences between Solanum species. New Phytologist, 2009, 183(3): 789-802.
|
[18] |
LI J M. Screening of wild relatives for enhanced stress tolerance in tomato[D]. The Netherlands: Wageningen University, 2010.
|
[19] |
PRASANNA H C, SINHA D P, RAI G K, KRISHNA R, KASHYAP S P, SINGH N K, SINGH M, MALATHI V G. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 2015, 64(2): 256-264.
|
[20] |
BHARANI M, NAGARAJAN P, RABINDRAN R, SARASWATHI R, BALASUBRAMANIAN P, RAMALINGAM J. Bacterial leaf blight resistance genes (Xa21, xa13andxa5) pyramiding through molecular marker assisted selection into rice cultivars. Archives of Phytopathology and Plant Protection, 2010, 43(10): 1032-1043.
|
[21] |
CAICEDO A L, STINCHCOMBE J R, OLSEN K M, SCHMITT J, PURUGGANAN M D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15670-15675.
|
[22] |
WANG Y, ZANG J P, SUN Y, ALI J, XU J L, LI Z K. Background-independent quantitative trait loci for drought tolerance identified using advanced backcross introgression lines in rice. Crop Science, 2013, 53(2): 430-441.
|
[23] |
TANKSLEY S D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 2004, 16(Suppl.): S181-S189.
|
[24] |
SACCO A, DI MATTEO A, LOMBARDI N, TROTTA N, PUNZO B, MARI A, BARONE A. Quantitative trait loci pyramiding for fruit quality traits in tomato. Molecular Breeding, 2013, 31(1): 217-222.
doi: 10.1007/s11032-012-9763-2
pmid: 23316114
|
[25] |
TIEMAN D, ZHU G T, RESENDE M F R Jr, LIN T, NGUYEN C, BIES D, RAMBLA J L, BELTRAN K S O, TAYLOR M, ZHANG B, IKEDA H, LIU Z Y, FISHER J, ZEMACH I, MONFORTE A, ZAMIR D, GRANELL A, KIRST M, HUANG S W, KLEE H. A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355(6323): 391-394.
doi: 10.1126/science.aal1556
pmid: 28126817
|
[26] |
CALAFIORE R, ALIBERTI A, RUGGIERI V, OLIVIERI F, RIGANO M M, BARONE A. Phenotypic and molecular selection of a superior Solanum pennellii introgression sub-line suitable for improving quality traits of cultivated tomatoes. Frontiers in Plant Science, 2019, 10: 190.
|
[27] |
赵统敏, 余文贵, 杨玛丽, 赵丽萍. 番茄可溶性固形物含量的主基因+多基因遗传分析. 江苏农业学报, 2010, 26(3): 572-576.
|
|
ZHAO T M, YU W G, YANG M L, ZHAO L P. Genetic analysis of soluble solid content using mixed major gene plus polygenes inheritance model in tomato. Jiangsu Journal of Agricultural Sciences, 2010, 26(3): 572-576. (In Chinese)
|
[28] |
周永健, 徐和金. 番茄几个主要加工性状的遗传分析. 遗传, 1990, 12(2): 1-3.
|
|
ZHOU Y J, XU H J. A genetic of several main processing characteristics in tomato. Hereditas (Beijing), 1990, 12(2): 1-3. (in Chinese)
|
[29] |
FRIDMAN E, LIU Y S, CARMEL-GOREN L, GUR A, SHORESH M, PLEBAN T, ESHED Y, ZAMIR D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 2002, 266(5): 821-826.
doi: 10.1007/s00438-001-0599-4
pmid: 11810256
|
[30] |
XU X Y, MARTIN B, COMSTOCK J P, VISION T J, TAUER C G, ZHAO B G, PAUSCH R C, KNAPP S. Fine mapping a QTL for carbon isotope composition in tomato. Theoretical and Applied Genetics, 2008, 117(2): 221-233.
doi: 10.1007/s00122-008-0767-6
pmid: 18542914
|
[31] |
MONFORTE A J, TANKSLEY S D. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: Breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theoretical and Applied Genetics, 2000, 100(3): 471-479.
|
[32] |
SEMEL Y, NISSENBAUM J, MENDA N, ZINDER M, KRIEGER U, ISSMAN N, PLEBAN T, LIPPMAN Z, GUR A, ZAMIR D. Overdominant quantitative trait loci for yield and fitness in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12981-12986.
|
[33] |
FRIDMAN E, CARRARI F, LIU Y S, FERNIE A R, ZAMIR D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305(5691): 1786-1789.
doi: 10.1126/science.1101666
pmid: 15375271
|
[34] |
MOYLE L C, NAKAZATO T. Complex epistasis for Dobzhansky- Muller hybrid incompatibility in Solanum. Genetics, 2009, 181(1): 347-351.
|
[35] |
SANDHU N, SINGH A, DIXIT S, STA CRUZ M T, MATURAN P C, JAIN R K, KUMAR A. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genetics, 2014, 15: 63.
doi: 10.1186/1471-2156-15-63
pmid: 24885990
|
[36] |
SHEN G J, ZHAN W, CHEN H X, XING Y Z. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science, 2014, 215: 11-18.
|
[37] |
YE G Y, SMITH K F. Marker-assisted gene pyramiding for cultivar development. Plant Breeding Reviews, 2009, 33: 219-256.
|
[38] |
杨自凤. 基于SSSL的水稻抽穗期基因的等位基因变异及上位性分析[D]. 广州: 华南农业大学, 2020.
|
|
YANG Z F. Allele variation and epistasis analysis of rice heading date genes based on SSSL[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
|
[39] |
CHEN J B, LI X Y, CHENG C, WANG Y H, QIN M, ZHU H T, ZENG R Z, FU X L, LIU Z Q, ZHANG G Q. Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Scientific Reports, 2014, 4: 4263.
doi: 10.1038/srep04263
pmid: 24584028
|
[40] |
SOYK S, MÜLLER N A, PARK S J, SCHMALENBACH I, JIANG K, HAYAMA R, ZHANG L, VAN ECK J, JIMÉNEZ-GÓMEZ J M, LIPPMAN Z B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 2017, 49(1): 162-168.
|
[41] |
LU J H, PAN C Y, LI X, HUANG Z J, SHU J S, WANG X X, LU X X, PAN F, HU J L, ZHANG H, SU W Y, ZHANG M, DU Y C, LIU L, GUO Y M, LI J M. OBV (obscure vein), a C2H2 zinc finger transcription factor, positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins. Horticulture Research, 2021, 8(1): 230.
|
[42] |
PETREIKOV M, SHEN S, YESELSON Y, LEVIN I, BAR M, SCHAFFER A A. Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta, 2006, 224(6): 1465-1479.
doi: 10.1007/s00425-006-0316-y
pmid: 16770584
|
[43] |
ZAMIR D. Plant breeders go back to nature. Nature Genetics, 2008, 40: 269-270.
doi: 10.1038/ng0308-269
pmid: 18305476
|