中国农业科学 ›› 2024, Vol. 57 ›› Issue (22): 4522-4540.doi: 10.3864/j.issn.0578-1752.2024.22.011

• 园艺 • 上一篇    下一篇

低温胁迫下链霉菌TOR3209对番茄叶绿素荧光特性和叶黄素循环的影响

马佳(), 彭杰丽, 贾楠, 王旭, 王占武, 胡栋()   

  1. 河北省农林科学院农业资源环境研究所/河北省肥料技术创新中心,石家庄 050051
  • 收稿日期:2024-03-17 接受日期:2024-04-16 出版日期:2024-11-16 发布日期:2024-11-22
  • 通信作者:
    胡栋,E-mail:
  • 联系方式: 马佳,E-mail:tangxinjiangcat@163.com。
  • 基金资助:
    河北省自然科学基金(C2023301090); 河北省引进国外智力项目

Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress

MA Jia(), PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong()   

  1. Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2024-03-17 Accepted:2024-04-16 Published:2024-11-16 Online:2024-11-22

摘要:

【目的】研究链霉菌TOR3209提高番茄低温耐受能力的生物学机制,从叶绿素荧光特性和叶黄素循环两方面入手揭示TOR3209对光系统II(PSII)的保护机制。【方法】以番茄为试验材料,将4叶期番茄幼苗于移栽时施加TOR3209菌剂,并于移栽30 d后进行低温(5 ℃)处理,设置常温TOR3209(TOR3209)、常温NI(NI)、低温TOR3209(TOR3209+C)和低温NI(NI+C)4个处理。比较低温胁迫下接菌和未接菌植株PSII性能、非光化学淬灭(NPQ)相关的叶绿素荧光参数、叶黄素循环组分、紫黄质脱环氧化酶(VDE)活性和抗坏血酸-谷胱甘肽(AsA-GSH)循环的差异。【结果】链霉菌TOR3209可缓解低温诱导的PSII实际光化学效率Y(II)的下降,避免了PSII光抑制。低温胁迫下番茄叶片快速叶绿素荧光诱导动力学(OJIP)曲线的J点明显上升同时出现K点,快速叶绿素荧光诱导动力学分析(JIP-test)发现,相对荧光曲线的初始斜率(Mo)增加,用于初级醌受体(QA)下游电子传递的能量比例(Ψo)降低,以吸收光能为基础的光化学性能指数(PIABS)减小;施加TOR3209菌剂的植株J点未上升且能够抑制K点的出现,Mo、Ψo和PIABS均能回归到常温水平,即TOR3209对PSII受体侧电子传递体和供体侧放氧复合体(OEC)均起到保护作用。TOR3209抑制低温胁迫下番茄叶片PIABS和以单位面积为基础的性能指数(PICS)的显著降低,结合荧光参数NPQ和保护性热耗散(ФNPQ)显著增加且非调节性能量耗散(ФNO)显著降低,证实促进保护性热耗散是TOR3209保护PSII的作用机制。低温胁迫导致番茄叶片叶黄素总库含量和VDE活性的降低,且AsA-GSH循环中的抗氧化酶(抗坏血酸过氧化物酶APX、谷胱甘肽还原酶GR、单脱氢抗坏血酸还原酶MDHAR)活性和抗氧化剂(抗坏血酸AsA、还原型谷胱甘肽GSH)含量降低,叶黄素循环启动减慢,叶片光合能力受到抑制。TOR3209不仅能提高低温胁迫下叶黄素脱环氧化状态(DEPS),而且增加叶黄素总库含量和VDE活性,进一步提高非光化学淬灭水平,及时转化过剩光能,保护光合机构的稳定性;TOR3209也能提高低温胁迫下番茄叶片上述抗氧化酶活性和抗氧化剂AsA的含量,优化AsA-GSH循环系统以清除活性氧(ROS)的同时还能促进叶黄素循环。【结论】TOR3209提高低温胁迫下番茄叶片光合电子传递活性维持PSII稳定性,促进叶黄素循环介导的热耗散缓解PSII光抑制,优化AsA-GSH循环减轻PSII氧化胁迫,增强番茄耐低温能力。

关键词: 番茄, 链霉菌, 低温胁迫, PSII光抑制, 叶绿素荧光, 叶黄素循环

Abstract:

【Objective】In order to explore the biological mechanism of Streptomyces sp. TOR3209 in improving the low temperature tolerance of tomato, and to reveal the protective mechanism of TOR3209 on photosystem II (PSII) from two aspects (chlorophyll fluorescence characteristics and xanthophyll cycle).【Method】As the experimental material, tomato seedlings of quadrifoil stage were applied with TOR3209 when transplanted into the pots, cold stress (5 ℃) was imposed on the 30th day after transplanting. The experiment was divided into four parts, which were inoculated plants (TOR3209), non-inoculated plants (NI), inoculated plants exposed to cold stress (TOR3209+C) and non-inoculated plants exposed to cold stress (NI+C). The differences in PSII performance, chlorophyll fluorescence parameters related to NPQ, xanthophyll cycle component, violaxanthin de-epoxidase (VDE) activity, and ascorbate-glutathione (AsA-GSH) cycle in plants of different treatments were compared.【Result】Streptomyces sp. TOR3209 could alleviate the decrease of actual photochemical efficiency of PSII Y (II) by cold stress and avoid PSII photoinhibition. Defensing to the cold stress, the shape of chlorophyll a fluorescence transient (OJIP) curve was significantly changed with increased in J step and an emergence of K step; while the approximated initial slope of the fluorescence transient (Mo) increased, and the rate at which trapped excitons transfer electrons to other electron receptors downstream of primary quinone receptor (QA) in the electron transport chain (Ψo) decreased, and the performance index on absorption basis (PIABS) decreased in JIP-test of tomato leaves. The inoculation of TOR3209 under cold stress prevented a significant increase in variable fluorescence intensity at J step and an emergence of K step, while the Mo, Ψo and PIABS returned to the levels in plants of NI, indicating that TOR3209 protected the electron transporters at PSII acceptor side and oxygen-evolving complex (OEC) at PSII donor side. The inoculation of TOR3209 also prevented a significant decrease in PIABS and the performance index on cross section basis (PICS) in tomato leaves as revealed by JIP-test, which in combination with the significantly increased NPQ and protective heat dissipation (ФNPQ), as well as the significantly decreased non-regulatory energy dissipation (ФNO), evidenced that the main mechanism of TOR3209 to protect PSII was the protective heat dissipation. Cold stress apparently decreased the de-epoxidation state (DEPS) of xanthophyll cycle, at the same time, reduced the levels of xanthophyll cycle components, the activities of VDE and antioxidases in AsA-GSH pathway (ascorbate peroxidase APX, glutathione reductase GR, monodehydroascorbate reductase MDHAR), and contents of antioxidants (ascorbate AsA, glutathione GSH), slowed down the xanthophyll cycle, and depressed the photosynthetic capacity of tomato leaves. However, TOR3209 inoculation could increase the DEPS of xanthophyll cycle, enhance the levels of xanthophyll cycle components and VDE activity under cold stress, which further raised the level of PSII non-photochemical fluorescence quenching coefficient, prevented excess excitation energy, and protected the photosynthetic apparatus. Meanwhile, TOR3209 inoculation improved the activities of the above-mentioned antioxidases and AsA content under cold stress, optimized the AsA-GSH cycle to confront the accumulation of reactive oxygen species (ROS) and facilitate xanthophyll cycle.【Conclusion】The improvement of cold tolerant capacity in tomato plants by TOR3209 inoculation was reflected in maintaining PSII stability by increasing the photosynthetic electron transfer activity, alleviating the damage of PSII photoinhibition via enhancing the xanthophyll cycle, and reducing oxidative stress on PSII by optimizing AsA-GSH cycle.

Key words: tomato (Solanum lycopersicum), Streptomyces, cold stress, PSII photoinhibition, chlorophyll fluorescence, xanthophyll cycle