[1] |
杨心彪, 李兴需, 刘睿, 周国林. 鲜食番茄成熟过程中果实营养成分的动态变化. 华中农业大学学报(自然科学版), 2022, 41(3): 191-199.
|
|
YANG X B, LI X X, LIU R, ZHOU G L. Dynamic changes of fruit nutrient components during ripening of fresh tomatoes. Journal of Huazhong Agricultural University (Natural Science Edition), 2022, 41(3): 191-199. (in Chinese)
|
[2] |
SHU P, ZHANG S J, LI Y J, WANG X Y, YAO L, SHENG J P, SHEN L. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiology and Biochemistry, 2021, 166: 1-9.
|
[3] |
LIU S M, FU L Y, TAN H H, JIANG J, CHE Z P, TIAN Y E, CHEN G Q. Resistance to boscalid in Botrytis cinerea from greenhouse- grown tomato. Plant Disease, 2021, 105(3): 628-635.
|
[4] |
HABIB W, SAAB C, MALEK R, KATTOURA L, ROTOLO C, GERGES E, BAROUDY F, POLLASTRO S, FARETRA F, DE MICCOLIS ANGELINI R M. Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology, 2020, 69(8): 1453-1468.
|
[5] |
赵统敏, 余文贵, 赵丽萍, 董友磊, 陈怀谷, 李永灿, 杨玛丽. 番茄抗灰霉病育种研究进展. 江苏农业学报, 2011, 27(5): 1141-1147.
|
|
ZHAO T M, YU W G, ZHAO L P, DONG Y L, CHEN H G, LI Y C, YANG M L. Research progress in breeding of tomato resistance to Botrytis cinerea. Jiangsu Journal of Agricultural Sciences, 2011, 27(5): 1141-1147. (in Chinese)
|
[6] |
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942.
|
[7] |
RAMON M, RUELENS P, LI Y, SHEEN J, GEUTEN K, ROLLAND F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. The Plant Journal, 2013, 75(1): 11-25.
|
[8] |
RODRIGUEZ M, PAROLA R, ANDREOLA S, PEREYRA C, MARTÍNEZ-NOËL G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the “Yin-Yang” model? Plant Science, 2019, 288: 110220.
|
[9] |
IM J H, CHO Y H, KIM G D, KANG G H, HONG J W, YOO S D. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana. Plant, Cell & Environment, 2014, 37(10): 2303-2312.
|
[10] |
LOVAS Á, BIMBO A, SZABÓ L, BÁNFALVI Z. Antisense repression of StubGAL83 affects root and tuber development in potato. The Plant Journal, 2003, 33(1): 139-147.
|
[11] |
FENG X, FENG P, YU H L, YU X Y, SUN Q, LIU S Y, MINH T N, CHEN J, WANG D, ZHANG Q, et al. GsSnRK 1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant, Cell & Environment, 2020, 43(5): 1192-1211.
|
[12] |
HULSMANS S, RODRIGUEZ M, DE CONINCK B, ROLLAND F. The SnRK1 energy sensor in plant biotic interactions. Trends in Plant Science, 2016, 21(8): 648-661.
doi: S1360-1385(16)30010-3
pmid: 27156455
|
[13] |
HAO L H, WANG H, SUNTER G, BISARO D M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. The Plant Cell, 2003, 15(4): 1034-1048.
|
[14] |
SHEN Q T, LIU Z, SONG F M, XIE Q, HANLEY-BOWDOIN L, ZHOU X P. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiology, 2011, 157(3): 1394-1406.
|
[15] |
SHEN W, HANLEY-BOWDOIN L. SnRK1: A versatile plant protein kinase that limits geminivirus infection. Current Opinion in Virology, 2021, 47: 18-24.
|
[16] |
ZHONG X T, WANG Z Q, XIAO R Y, CAO L G, WANG Y Q, XIE Y, ZHOU X P. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. Journal of Virology, 2017, 91(16): e00300-17.
|
[17] |
JIANG C, HEI R N, YANG Y, ZHANG S J, WANG Q H, WANG W, ZHANG Q, YAN M, ZHU G R, HUANG P P, LIU H Q, XU J R. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nature Communications, 2020, 11(1): 4382.
|
[18] |
KIM C Y, VO K T X, AN G, JEON J S. A rice sucrose non- fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58: 669-675.
|
[19] |
FILIPE O, DE VLEESSCHAUWER D, HAECK A, DEMEESTERE K, HÖFTE M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Scientific Reports, 2018, 8: 3864.
doi: 10.1038/s41598-018-22101-6
pmid: 29497084
|
[20] |
WANG L, WANG H Y, HE S F, MENG F S, ZHANG C Z, FAN S J, WU J J, ZHANG S Z, XU P F. GmSnRK1.1, a sucrose non-fermenting-1 (SNF1)-related protein kinase, promotes soybean resistance to Phytophthora sojae. Frontiers in Plant Science, 2019, 10: 996.
|
[21] |
HAN X Y, ZHANG L, ZHAO L F, XUE P Y, QI T, ZHANG C L, YUAN H B, ZHOU L X, WANG D W, QIU J L, SHEN Q H. SnRK1 phosphorylates and destabilizes WRKY3 to enhance barley immunity to powdery mildew. Plant Communications, 2020, 1(4): 100083.
|
[22] |
LUO J J, YU W Y, XIAO Y S, ZHANG Y F, PENG F T. FaSnRK1α mediates salicylic acid pathways to enhance strawberry resistance to Botrytis cinerea. Horticultural Plant Journal, 2024, 10(1): 131-144.
|
[23] |
SU D Y, DEVARENNE T P. In vitro activity characterization of the tomato SnRK1 complex proteins. Biochimica et Biophysica Acta - Proteins and Proteomics, 2018, 1866(8): 857-864.
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
|
[25] |
HUAI B Y, YANG Q, WEI X B, PAN Q L, KANG Z S, LIU J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC Plant Biology, 2020, 20(1): 49.
doi: 10.1186/s12870-020-2248-2
pmid: 32000681
|
[26] |
OUYANG Z G, LIU S X, HUANG L H, HONG Y B, LI X H, HUANG L, ZHANG Y F, ZHANG H J, LI D Y, SONG F M. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, members of B3 group of ERF family, are required for resistance to Botrytis cinerea. Frontiers in Plant Science, 2016, 7: 1964.
|
[27] |
汤文倩, 王冬梅. 小麦与叶锈菌互作过程中TaSnRK1的表达分析及其亚细胞定位. 河北农业大学学报, 2021, 44(4): 7-12.
doi: 10.13320/j.cnki.jauh.2021.0059
|
|
TANG W Q, WANG D M. Expression analysis and subcellular localization of TaSnRK1 during the interaction between wheat and Puccinia triticina. Journal of Hebei Agricultural University, 2021, 44(4): 7-12. (in Chinese)
|
[28] |
罗静静, 张亚飞, 张淑辉, 彭福田, 肖元松. 草莓蔗糖非发酵-1-相关蛋白激酶1(SnRK1)α亚基编码基因的克隆及表达分析. 植物生理学报, 2018, 54(8): 1341-1348.
|
|
LUO J J, ZHANG Y F, ZHANG S H, PENG F T, XIAO Y S. Cloning and expression analysis of sucrose non-fermenting-1-related protein kinase 1 (SnRK1) α-subunit gene in strawberry. Plant Physiology Journal, 2018, 54(8): 1341-1348. (in Chinese)
|
[29] |
LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 2014, 65(3): 799-807.
doi: 10.1093/jxb/ert474
pmid: 24453229
|
[30] |
EMANUELLE S, DOBLIN M S, STAPLETON D I, BACIC A, GOOLEY P R. Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends in Plant Science, 2016, 21(4): 341-353.
doi: S1360-1385(15)00281-2
pmid: 26642889
|
[31] |
CHEN W, LI Y, YAN R B, REN L, LIU F, ZENG L Y, SUN S N, YANG H H, CHEN K R, XU L, LIU L J, FANG X P, LIU S Y. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1. Molecular Plant Pathology, 2021, 22(9): 1057-1069.
|