[1] |
BOLTON M D, THOMMA B P, NELSON B D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7(1): 1-16.
|
[2] |
DEAN R, VAN KAN J A L, PRETORIUS Z A, HAMMOND- KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430.
|
[3] |
SAHARAN G S, MOUGOU A H, MEHTA N. History and host range//Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Springer, 2008: 19-39.
|
[4] |
XIE L, JIAN H, DAI H, YANG Y, LIU Y, WEI L, TAN M, LI J, LIU L. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. BMC Plant Biology, 2023, 23(1): 479.
|
[5] |
WANG P, WANG Y, HU Y, CHEN Z, HAN L, ZHU W, TIAN B, FANG A, YANG Y, BI C, YU Y. Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. The Plant Journal, 2024, 118(1): 90-105.
|
[6] |
蔺自敏. 油菜菌核病发病特点及防治措施. 安徽农学通报, 2021, 27(18): 96-97.
|
|
LIN Z M. Incidence characteristics and control measures of rapeseed sclerotiniose. Anhui Agricultural Science Bulletin, 2021, 27(18): 96-97. (in Chinese)
|
[7] |
杨清坡, 刘杰, 姜玉英, 刘万才. 2016年全国油菜菌核病发生特点、原因分析及治理对策. 植物保护, 2018, 44(1): 147-152.
|
|
YANG Q P, LIU J, JIANG Y Y, LIU W C. Occurrence characteristics, causes and control methods of rape sclerotiniose in China in 2016. Plant Protection, 2018, 44(1): 147-152. (in Chinese)
|
[8] |
王广炳. 春季油菜菌核病防治关键技术. 植物医生, 2017, 30(4): 43-45.
|
|
WANG G B. Key technologies for preventing and controlling sclerotiniose in spring rapeseed. Plant Doctor, 2017, 30(4): 43-45. (in Chinese)
|
[9] |
ZOGLI P, LIBAULT M. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions? Plant Science, 2017, 263: 89-93.
|
[10] |
KAZAN K, MANNERS J M. JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science, 2012, 17(1): 22-31.
|
[11] |
PAUWELS L, GOOSSENS A. The JAZ proteins: A crucial interface in the jasmonate signaling cascade. The Plant Cell, 2011, 23(9): 3089-3100.
|
[12] |
CHICO J M, CHINI A, FONSECA S, SOLANO R. JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology, 2008, 11(5): 486-494.
|
[13] |
魏昕, 刘雨恒, 刘宇阳, 殷晓浦, 谢恬, 谌容, 卫秋慧. 植物JAZ蛋白家族研究进展. 植物生理学报, 2021, 57(5): 1039-1046.
|
|
WEI X, LIU Y H, LIU Y Y, YIN X P, XIE T, CHEN R, WEI Q H. Advances of JAZ family in plants. Plant Physiology Journal, 2021, 57(5): 1039-1046. (in Chinese)
|
[14] |
STASWICK P E. JAZing up jasmonate signaling. Trends in Plant Science, 2008, 13(2): 66-71.
|
[15] |
DEMIANSKI A J, CHUNG K M, KUNKEL B N. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Molecular Plant Pathology, 2012, 13(1): 46-57.
|
[16] |
LOZANO-DURÁN R, ROSAS-DÍAZ T, GUSMAROLI G, LUNA A P, TACONNAT L, DENG X W, BEJARANO E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell, 2011, 23(3): 1014-1032.
|
[17] |
WEI N, SERINO G, DENG X W. The COP9 signalosome: More than a protease. Trends in Biochemical Sciences, 2008, 33(12): 592-600.
|
[18] |
ROSAS-DÍAZ T, MACHO A P, BEUZÓN C R, LOZANO-DURÁN R, BEJARANO E R. The C2 protein from the geminivirus tomato yellow leaf curl Sardinia virus decreases sensitivity to jasmonates and suppresses jasmonate-mediated defences. Plants, 2016, 5(1): 8.
|
[19] |
JIA Q, LIU N, XIE K, DAI Y, HAN S, ZHAO X, QIAN L, WANG Y, ZHAO J, GOROVITS R, XIE D, HONG Y, LIU Y. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathogens, 2016, 12(6): e1005668.
|
[20] |
LIU C, ZHANG J, WANG J, LIU W, WANG K, CHEN X, WEN Y, TIAN S, PU Y, FAN G, MA X, SUN X. Tobacco mosaic virus hijacks its coat protein-interacting protein IP-L to inhibit NbCML30, a calmodulin-like protein, to enhance its infection. The Plant Journal, 2022, 112(3): 677-693.
|
[21] |
裴悦宏, 李凤巍, 刘维娜, 温玉霞, 朱鑫, 田绍锐, 樊光进, 马小舟, 孙现超. 本氏烟半胱氨酸蛋白酶基因家族特征及其在TMV侵染中的功能. 中国农业科学, 2022, 55(21): 4196-4210. doi: 10.3864/j.issn.0578-1752.2022.21.008.
|
|
PEI Y H, LI F W, LIU W N, WEN Y X, ZHU X, TIAN S R, FAN G J, MA X Z, SUN X C. Characteristics of cysteine proteinase gene family in Nicotiana benthamiana and its function during TMV infection. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210. doi: 10.3864/j.issn.0578-1752.2022.21.008. (in Chinese)
|
[22] |
温玉霞, 张坚, 王琴, 王靖, 裴悦宏, 田绍锐, 樊光进, 马小舟, 孙现超. 本氏烟 NbMBF1c的克隆、表达及在TMV侵染过程中的功能. 中国农业科学, 2022, 55(18): 3543-3555. doi: 10.3864/j.issn.0578-1752.2022.18.006.
|
|
WEN Y X, ZHANG J, WANG Q, WANG J, PEI Y H, TIAN S R, FAN G J, MA X Z, SUN X C. Cloning, expression and anti-TMV function analysis of Nicotiana benthamiana NbMBF1c. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. doi: 10.3864/j.issn.0578-1752.2022.18.006. (in Chinese)
|
[23] |
刘昌云, 李欣羽, 田绍锐, 王靖, 裴悦宏, 马小舟, 樊光进, 汪代斌, 孙现超. 番茄 SlN-like的克隆、表达与抗病毒功能. 中国农业科学, 2021, 54(20): 4348-4357. doi: 10.3864/j.issn.0578-1752.2021.20.009.
|
|
LIU C Y, LI X Y, TIAN S R, WANG J, PEI Y H, MA X Z, FAN G J, WANG D B, SUN X C. Cloning, expression and anti-virus function analysis of Solanum lycopersicum SlN-like. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357. doi: 10.3864/j.issn.0578-1752.2021.20.009. (in Chinese)
|
[24] |
LIU C, TIAN S, LV X, PU Y, PENG H, FAN G, MA X, MA L, SUN X. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Molecular Plant Pathology, 2022, 23(1): 60-77.
|
[25] |
WASTERNACK C, HAUSE B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058.
|
[26] |
CAMPOS M L, KANG J H, HOWE G A. Jasmonate-triggered plant immunity. Journal of Chemical Ecology, 2014, 40(7): 657-675.
|
[27] |
MAJOR I T, YOSHIDA Y, CAMPOS M L, KAPALI G, XIN X F, SUGIMOTO K, DE OLIVEIRA FERREIRA D, HE S Y, HOWE G A. Regulation of growth-defense balance by the JASMONATE ZIM- DOMAIN (JAZ)-MYC transcriptional module. New Phytologist, 2017, 215(4): 1533-1547.
|
[28] |
CHINI A, BOTER M, SOLANO R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. The FEBS Journal, 2009, 276(17): 4682-4692.
|
[29] |
THATCHER L F, CEVIK V, GRANT M, ZHAI B, JONES J D G, MANNERS J M, KAZAN K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. Journal of Experimental Botany, 2016, 67(8): 2367-2386.
|
[30] |
ZHANG T, MENG L, KONG W, YIN Z, WANG Y, SCHNEIDER J D, CHEN S. Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics, 2018, 175: 114-126.
|
[31] |
闫筱筱. 中国野生毛葡萄转录因子JAZ和TLP基因抗病功能研究[D]. 杨凌: 西北农林科技大学, 2018.
|
|
YAN X X. Research on disease resistance of transcription factor JAZ and TLP gene in Chinese wild grape Vitis quinquangularis[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
|
[32] |
YU J, ZHANG Y, DI C, ZHANG Q, ZHANG K, WANG C, YOU Q, YAN H, DAI S Y, YUAN J S, XU W, SU Z. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 2016, 67(3): 751-762.
|
[33] |
刘霞, 唐设, 窦志, 李刚华, 刘正辉, 王绍华, 丁承强, 丁艳锋. 茉莉酸甲酯对武运粳24和宁粳3号灌浆早期高温胁迫生理特性的影响. 中国水稻科学, 2016, 30(3): 291-303.
|
|
LIU X, TANG S, DOU Z, LI G H, LIU Z H, WANG S H, DING C Q, DING Y F. Effects of MeJA on the physiological characteristics of japonica rice Wuyunjing 24 and Ningjing 3 during early grain filling stage under heat stress. Chinese Journal of Rice Science, 2016, 30(3): 291-303. (in Chinese)
|
[34] |
朱畇昊, 张梦佳, 董诚明. 外源MeJA对高温胁迫下半夏抗氧化系统和胁迫基因的影响. 植物研究, 2021, 41(1): 67-73.
|
|
ZHU Y H, ZHANG M J, DONG C M. Effects of exogenous MeJA on antioxidant system and stress genes of Pinellia ternata under high temperature stress. Bulletin of Botanical Research, 2021, 41(1): 67-73. (in Chinese)
|