[1] |
张存立, 郭红卫. 乙烯信号转导通路研究. 自然杂志, 2012, 34(4): 219-228.
|
|
ZHANG C L, GUO H W. Study of ethylene signal transduction pathway. Chinese Journal of Nature, 2012, 34(4): 219-228. (in Chinese)
|
[2] |
DUBOIS M, VAN DEN BROECK L, INZE D. The pivotal role of ethylene in plant growth. Trends in Plant Science, 2018, 23(4): 311-323.
doi: S1360-1385(18)30015-3
pmid: 29428350
|
[3] |
ZHAO H, YIN C C, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology, 2021, 63(1): 102-125.
|
[4] |
赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展. 生物技术通报, 2016, 32(10): 1-10.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.001
|
|
ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress. Biotechnology Bulletin, 2016, 32(10): 1-10. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.001
|
[5] |
DOLGIKH V A, PUKHOVAYA E M, ZEMLYANSKAYA E V. Shaping ethylene response: The role of EIN3/EIL1 transcription factors. Frontiers in Plant Science, 2019, 10: 1030.
doi: 10.3389/fpls.2019.01030
pmid: 31507622
|
[6] |
WANG L K, QIAO H. New insights in transcriptional regulation of the ethylene response in Arabidopsis. Frontiers Plant Science, 2019, 10: 790.
|
[7] |
YANG C, LU X, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Molecular Plant, 2015, 8(4): 495-505.
|
[8] |
田骄阳, 徐徐, 孙义伟, 潘浪波, 黄有军. EIN3/EIL基因家族的系统进化. 分子植物育种, 2022, 20(21): 7060-7070.
|
|
TIAN J Y, XU X, SUN Y W, PAN L B, HUANG Y J. Phylogeny of EIN3/EIL gene family. Molecular Plant Breeding, 2022, 20(21): 7060-7070. (in Chinese)
|
[9] |
DAS JYOTI S, BIN AZIM J, ROBIN A H K. Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea mays. Plant Gene, 2021, 25: 100270.
|
[10] |
YANG C, MA B, HE S J, XIONG Q, DUAN K X, YIN C C, CHEN H, LU X, CHEN S Y, ZHANG J S. MAOHUZI6/ETHYLENE INSENSITIVE3- LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165.
|
[11] |
JIN J, DUAN J L, SHAN C, MEI Z L, CHEN H Y, FENG H F, ZHU J, CAI W M. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. Plant Science, 2020, 292: 110353.
|
[12] |
LIU C, MA T, YUAN D Y, ZHOU Y, LONG Y, LI Z W, DONG Z Y, DUAN M J, YU D, JING Y Z, BAI X Y, WANG Y B, HOU Q C, LIU S S, ZHANG J S, CHEN S Y, LI D Y, LIU X, LI Z K, WANG W S, LI J P, WEI X, MA B, WAN X Y. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022, 20(8): 1470-1486.
|
[13] |
ZHANG Y Y, ZANG Y H, CHEN J W, FENG S L, ZHANG Z Y, HU Y, ZHANG T Z. A truncated ETHYLENE INSENSITIVE3-like protein, GhLYI, regulates senescence in cotton. Plant Physiology, 2023, 193(2): 1177-1196.
|
[14] |
YANG Z, WANG C Q, QIU K, CHEN H R, LI Z P, LI X, SONG J B, WANG X L, GAO J, KUAI B K, ZHOU X. The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize. Plant, Cell and Environment, 2020, 43(9): 2287-2300.
|
[15] |
SHI Q L, DONG Y B, QIAO D H, ZHOU Q, ZHANG L, MA Z Y, LI Y L. Characterization and functional analysis of transcription factor ZmEIL1 in maize. Biologia Plantarum, 2017, 61(2): 266-274.
|
[16] |
FU J Y, PEI W Z, HE L Q, MA B, TANG C, ZHU L, WANG L P, ZHONG Y Y, CHEN G, WANG Q, WANG Q. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genetics, 2023, 19(11): e1011052.
|
[17] |
QIN H, PANDEY B K, LI Y X, HUANG G Q, WANG J, QUAN R D, ZHOU J H, ZHOU Y, MIAO Y C, ZHANG D B, BENNETT M J, HUANG R F. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. The Plant Cell, 2022, 34(4): 1273-1288.
doi: 10.1093/plcell/koac008
pmid: 35021223
|
[18] |
李玥, 王兴荣, 张彦军, 李永生, 祁旭升. 玉米乙烯信号转导相关基因ZmEIL2的克隆及表达分析. 植物遗传资源学报, 2023, 24(2): 550-558.
doi: 10.13430/j.cnki.jpgr.20220920002
|
|
LI Y, WANG X R, ZHANG Y J, LI Y S, QI X S. Molecular cloning and expression analysis of ethylene signaling related gene ZmEIL2 in maize. Journal of Plant Genetic Resources, 2023, 24(2): 550-558. (in Chinese)
|
[19] |
CHEN J, ZENG B, ZHANG M, XIE S J, WANG G K, HAUCK A, LAI J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 2014, 166(1): 252-264.
doi: 10.1104/pp.114.240689
pmid: 25037214
|
[20] |
YI F, GU W, CHEN J, SONG N, GAO X, ZHANG X B, ZHOU Y S, MA X X, SONG W B, ZHAO H M, ESTEBAN E, PASHA A, PROVART N J, LAI J S. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell, 2019, 31(5): 974-992.
doi: 10.1105/tpc.18.00961
pmid: 30914497
|
[21] |
TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
|
[22] |
LI W, LI Y, SHI H, WANG H, JI K, ZHANG L, WANG Y, DONG Y, LI Y. ZmMAPK6, a mitogenactivated protein kinase, regulates maize kernel weight. Journal of Experimental Botany, 2024, 75(11): 3287-3299.
|
[23] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[24] |
孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29(2): 224-234.
|
|
SUN H, LANG Z H, ZHU L, HUANG D H. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chinese Journal of Biotechnology, 2013, 29(2): 224-234. (in Chinese)
|
[25] |
|
|
ZHAO R, CAI M J, DU Y F, ZHANG Z X. Molecular basis of kernel development and kernel number in maize (Zea mays L.). Scientia Agricultura Sinica, 2019, 52(20): 3495-3506. doi: 10.3864/j.issn. 0578-1752.2019.20.001. (in Chinese)
|
[26] |
DAI D W, MA Z Y, SONG R T. Maize kernel development. Molecular Breeding, 2021, 41(1): 2.
|
[27] |
WANG C, LI H G, LONG Y, DONG Z Y, WANG J H, LIU C, WEI X, WAN X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. International Journal of Molecular Sciences, 2023, 24(2): 1025.
|
[28] |
ZHANG J H, ZHANG X, LIU X M, PAI Q F, WANG Y H, WU X L. Molecular network for regulation of seed size in plants. International Journal of Molecular Sciences, 2023, 24(13): 10666.
|
[29] |
HEYDLAUFF J, ERBASOL SERBES I, VO D, MAO Y B, GIESEKING S, NAKEL T, HARTEN T, VOLZ R, HOFFMANN A, GROß-HARDT R. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. Molecular Plant, 2022, 15(2): 363-371.
|
[30] |
ZHU L S, CHEN L, WU C J, SHAN W, CAI D L, LIN Z X, WEI W, CHEN J Y, LU W J, KUANG J F. Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening. Journal of Integrative Plant Biology, 2023, 65(1): 150-166.
|
[31] |
QIN H, ZHANG Z J, WANG J, CHEN X B, WEI P C, HUANG R F. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genetics, 2017, 13(8): e1006955.
|
[32] |
QIAO J Z, QUAN R D, WANG J, LI Y X, XIAO D L, ZHAO Z H, HUANG R F, QIN H. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Communications, 2024, 5(3): 100771.
|
[33] |
ZHANG M, ZHANG M Y, WANG J Y, DAI S S, ZHANG M H, MENG Q W, MA N N, ZHUANG K Y. Salicylic acid regulates two photosystem Ⅱ protection pathways in tomato under chilling stress mediated by ETHYLENE INSENSITIVE 3-like proteins. The Plant Journal, 2023, 114(6): 1385-1404.
|
[34] |
YAN Z W, LIU X, LJUNG K, LI S N, ZHAO W Y, YANG F, WANG M L, TAO Y. Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1. Plant Physiology, 2017, 175(3): 1438-1454.
doi: 10.1104/pp.17.00878
pmid: 28931628
|