[1] |
MARAIS A, FAURE C, THEIL S, CANDRESSE T. Molecular characterization of a novel species of Capillovirus from Japanese apricot (Prunus mume). Viruses, 2018, 10(4): 144.
|
[2] |
LEE J, LEE D S, RYU H, LIM S, LEE S J. First report of mume virus A infecting Prunus salicina worldwide and Prunus mume in Korea. Plant Disease, 2023, 107(3): 972.
|
[3] |
ZHANG Y, ZHOU J, ZHAN B, LI S, ZHANG Z. First report of peach leaf pitting-associated virus (PLPaV), plum bark necrosis stem pitting-associated virus (PBNSPaV), and mume virus A (MuVA) from Mei (Prunus mume) in China. Plant Disease, 2021, 105(8): 2259.
|
[4] |
ZHENG Y Y, BU F D, WU C J, CHEN J G, LIU Z, XIANG B C, CUI B M. First report of mume virus A infection of Prunus persica in China. Plant Disease, 2020, 104(10): 2741.
|
[5] |
TUO D, SHEN W, YAN P, LI X, ZHOU P. Rapid construction of stable infectious full-length cDNA clone of papaya leaf distortion mosaic virus using in-fusion cloning. Viruses, 2015, 7(12): 6241-6250.
doi: 10.3390/v7122935
pmid: 26633465
|
[6] |
DAI Z, HE R, BERNARDS M A, WANG A. The cis-expression of the coat protein of turnip mosaic virus is essential for viral intercellular movement in plants. Molecular Plant Pathology, 2020, 21(9): 1194-1211.
doi: 10.1111/mpp.12973
pmid: 32686275
|
[7] |
SUN K, ZHAO D, LIU Y, HUANG C, ZHANG W, LI Z. Rapid construction of complex plant RNA virus infectious cDNA clones for agroinfection using a yeast-E. coli-Agrobacterium shuttle vector. Viruses, 2017, 9(11): 332.
|
[8] |
RIECHMANN J L, LAÍN S, GARCÍA J A. Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology, 1990, 177(2): 710-716.
|
[9] |
LI C, YAEGASHI H, KISHIGAMI R, KAWAKUBO A, YAMAGISHI N, ITO T, YOSHIKAWA N. Apple russet ring and apple green crinkle diseases: Fulfillment of Koch’s postulates by virome analysis, amplification of full-length cDNA of viral genomes, in vitro transcription of infectious viral RNAs, and reproduction of symptoms on fruits of apple trees inoculated with viral RNAs. Frontiers in Microbiology, 2020, 11: 1627.
|
[10] |
SIMKOVICH A J, LI Y, KOHALMI S E, GRIFFITHS J S, WANG A. Molecular identification of prune dwarf virus (PDV) infecting sweet cherry in Canada and development of a PDV full-length infectious cDNA clone. Viruses, 2021, 13(10): 2025.
|
[11] |
CUI H, HONG N, WANG G, WANG A. Genomic segments RNA1 and RNA2 of prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts. Molecular Plant-Microbe Interactions, 2013, 26(5): 515-527.
|
[12] |
LI Z N, JELKMANN W, SUN P P, ZHANG L. Construction of full-length infectious cDNA clones of apple stem grooving virus using Gibson assembly method. Virus Research, 2020, 276(15): 197790.
|
[13] |
OHIRA K, NAMBA S, ROZANOV M, KUSUMI T, TSUCHIZAKI T. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: Comparative sequence analysis of capillovirus genomes. The Journal of General Virology, 1995, 76(9): 2305-2309.
|
[14] |
NOORANI M S, AWASTHI P, SINGH R M, RAM R, SHARMA M P, SINGH S R, AHMED N, HALLAN V, ZAIDI A A. Complete nucleotide sequence of cherry virus A (CVA) infecting sweet cherry in India. Archives of Virology, 2010, 155(12): 2079-2082.
doi: 10.1007/s00705-010-0826-6
pmid: 20938696
|
[15] |
BHARDWAJ P, HALLAN V. Molecular evidence of apple stem grooving virus infecting Ficus palmata. Trees, 2019, 33(1): 1-9.
|
[16] |
张丽, 王德富, 裴燕妮, 咸珅, 牛颜冰. 大豆花叶病毒半夏分离物侵染性克隆构建及鉴定. 生物工程学报, 2020, 36(5): 949-958.
|
|
ZHANG L, WANG D F, PEI Y N, XIAN S, NIU Y B. Construction and characterization of an infectious clone of soybean mosaic virus isolate from Pinellia ternata. Chinese Journal of Biotechnology, 2020, 36(5): 949-958. (in Chinese)
|
[17] |
卜方迪, 陈俊光, 刘贞, 向本春, 申冕, 崔百明, 郑银英. 新疆蟠桃中发现油桃茎痘相关病毒和亚洲李属病毒. 园艺学报, 2021, 48(1): 49-59.
doi: 10.16420/j.issn.0513-353x.2020-0215
|
|
BU F D, CHEN J G, LIU Z, XIANG B C, SHEN M, CUI B M, ZHENG Y Y. Nectarine stem pitting-associated virus and Asian Prunus virus found in Prunus persica of Xinjiang. Acta Horticulturae Sinica, 2021, 48(1): 49-59. (in Chinese)
|
[18] |
ADAMS M J, ANTONIW J F, BAR-JOSEPH M, BRUNT A A, CANDRESSE T, FOSTER G D, MARTELLI G P, MILNE R G, ZAVRIEV S K, FAUQUET C M. The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology, 2004, 149(5): 1045-1060.
|
[19] |
LÜTCKE H A, CHOW K C, MICKEL F S, MOSS K A, KERN H F, SCHEELE G A. Selection of AUG initiation codons differs in plants and animals. The EMBO Journal, 1987, 6(1): 43-48.
|
[20] |
PETRZIK K, PŘIBYLOVÁ J, KOLONIUK I, ŠPAK J. Molecular characterization of a novel capillovirus from red currant. Archives of Virology, 2016, 161(4): 1083-1086.
doi: 10.1007/s00705-016-2752-8
pmid: 26754736
|
[21] |
COMMANDEUR U, JARAUSCH W, LI Y, KOENIG R, BURGERMEISTER W. cDNAs of beet necrotic yellow vein virus RNAs 3 and 4 are rendered biologically active in a plasmid containing the cauliflower mosaic virus 35S promoter. Virology, 1991, 185(1): 493-495.
pmid: 1926790
|
[22] |
DOMIER L L, FRANKLIN K M, HUNT A G, RHOADS R E, SHAW J G. Infectious in vitro transcripts from cloned cDNA of a potyvirus, tobacco vein mottling virus. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3509-3513.
|
[23] |
LIU Q, YANG L, XUAN Z, WU J, QIU Y, ZHANG S, WU D, ZHOU C, CAO M. Complete nucleotide sequence of loquat virus A, a member of the family Betaflexiviridae with a novel genome organization. Archives of Virology, 2020, 165(1): 223-226.
|
[24] |
HIRATA H, YAMAJI Y, KOMATSU K, KAGIWADA S, OSHIMA K, OKANO Y, TAKAHASHI S, UGAKI M, NAMBA S. Pseudo- polyprotein translated from the full-length ORF1 of Capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Research, 2010, 152(1/2): 1-9.
|
[25] |
WYLIE S, JONES M. Hardenbergia virus A, a novel member of the family Betaflexiviridae from a wild legume in Southwest Australia. Archives of Virology, 2011, 156(7): 1245-1250.
|
[26] |
KOMATSU K, HIRATA H, FUKAGAWA T, YAMAJI Y, OKANO Y, ISHIKAWA K, ADACHI T, MAEJIMA K, HASHIMOTO M, NAMBA S. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Research, 2012, 167(1): 8-15.
doi: 10.1016/j.virusres.2012.02.019
pmid: 22401846
|
[27] |
GARCIA-RUIZ H. Susceptibility genes to plant viruses. Viruses, 2018, 10(9): 484.
|
[28] |
MITSUHARA I, UGAKI M, HIROCHIKA H, OHSHIMA M, MURAKAMI T, GOTOH Y, KATAYOSE Y, NAKAMURA S, HONKURA R, NISHIMIYA S, et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant & Cell Physiology, 1996, 37(1): 49-59.
|
[29] |
CHENG J H, PENG C W, HSU Y H, TSAI C H. The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. Journal of Virology, 2002, 76(12): 6114-6120.
|
[30] |
KÜHN U, GÜNDEL M, KNOTH A, KERWITZ Y, RÜDEL S, WAHLE E. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. The Journal of Biological Chemistry, 2009, 284(34): 22803-22814.
|
[31] |
CHEN I H, CHENG J H, HUANG Y W, LIN N S, HSU Y H, TSAI C H. Characterization of the polyadenylation activity in a replicase complex from bamboo mosaic virus-infected Nicotiana benthamiana plants. Virology, 2013, 444(1/2): 64-70.
|
[32] |
SHIEN J H, SU Y D, WU H Y. Regulation of coronaviral poly(A) tail length during infection is not coronavirus species- or host cell-specific. Virus Genes, 2014, 49(3): 383-392.
|
[33] |
WU H Y, KE T Y, LIAO W Y, CHANG N Y. Regulation of coronaviral poly(A) tail length during infection. PLoS ONE, 2013, 8(7): e70548.
|
[34] |
NIU S, CAO S, HUANG L J, TAN K C, WONG S M. The length of an internal poly(A) tract of hibiscus latent Singapore virus is crucial for its replication. Virology, 2015, 474 (1): 52-64.
|