中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 379-390.doi: 10.3864/j.issn.0578-1752.2023.02.014
杨改青1(),王林枫2(
),李文清3,朱河水4(
),付彤2,廉红霞2,张立阳2,滕战伟2,张黎杰2,任宏2,徐新颖2,刘新鹤2,魏钰轩2,高腾云2(
)
收稿日期:
2021-09-18
接受日期:
2022-06-24
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
朱河水,E-mail:作者简介:
杨改青,E-mail:基金资助:
YANG GaiQing1(),WANG LinFeng2(
),LI WenQing3,ZHU HeShui4(
),FU Tong2,LIAN HongXia2,ZHANG LiYang2,TENG ZhanWei2,ZHANG LiJie2,REN Hong2,XU XinYing2,LIU XinHe2,WEI YuXuan2,GAO TengYun2(
)
Received:
2021-09-18
Accepted:
2022-06-24
Online:
2023-01-16
Published:
2023-02-07
摘要:
【背景】昼夜节律是生物界普遍经历的自然现象,随着昼夜节律的变化,生物细胞内部发生着不同的反应和变化,并对动物机体的代谢和生理机能也产生不同的影响,进而影响动物的生长、生产和繁殖等活动。牛奶是人类喜爱的接近完美的食物,由于受科技水平的限制,多年来,人们对牛奶的认识仅停留在营养层面,而忽略昼夜节律对牛奶理化特性和生理功能的影响。【目的】通过对昼夜牛奶的理化特性和生理功能研究,提出根据牛奶不同时段的生理功能收集牛奶,为昼夜牛奶的分类加工和科学饮用奠定了理论依据。【方法】分别采集夜间(5:00,产生时间21:00-5:00)和白天(13:00,产生时间6:00-13:00)的牛奶检测其营养组成,并通过脂质组学检测牛奶脂肪酸组成。提取上清液检测牛奶的理化指标,包括超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽还原酶(GR)、丙二醛(MDA)等氧化还原指标;褪黑素(melatonin,MT)、生长激素(GH)、三碘甲状腺原氨酸(T3)、胰岛素(INS)、胰高血糖素(GCN)等代谢相关激素和免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)、干扰素γ(IFN-γ)、热休克蛋白(HSP70、HSP90)等免疫相关因子,并进行代谢组学检测。【结果】昼夜牛奶中总的脂肪、蛋白、乳糖和固形物差异不显著,但昼夜牛奶的理化特性差异显著,夜间牛奶的抗氧化活性和免疫活性显著高于白天牛奶,其中的褪黑素和免疫活性物质(IFN-γ)等的含量显著升高,丙二醛、热休克蛋白等显著降低。代谢组学研究发现夜间牛奶和白天牛奶有36种差异代谢产物,除3种代谢物夜间含量低于白天外,其余33种代谢物夜间牛奶的含量均高于白天,这些差异代谢物包括糖类(二羟丙酮磷酸、D-葡萄糖-6-磷酸、D-乳糖、2-乙氧基乙醇、二羟基丙酮、乙酰磷酸、阿坎酸、α-D-葡萄糖、D-半乳糖醛酸、棉子糖等),脂类(DL-2-羟基丁酸、顺式-9-十六烯酸、胆汁酸、十八碳四烯酸(Stearidonic Acid, SDA)、十四碳烯酸、二十碳五烯酸(Eicosapentaenoic acid, EPA)、十三烷酸、肌醇),氨基酸类(L-瓜氨酸、D-鸟氨酸、N6-乙酰基-L-赖氨酸、D-脯氨酸、牛磺酸、乙酰基神经氨酸、赖氨酸-亮氨酸二肽等氨基酸)及芳香化合物类(S-甲基-5'-硫代腺苷、2'-甲氧基胞苷、2-脱氧尿苷)等,其中脂类中大多数为不饱和脂肪酸,如顺式-9-十六烯酸、十八碳四烯酸、十四碳烯酸、二十碳五烯酸等。脂质组学研究发现有21类1 094种脂质分子,主要包括甘油三酯(TG)、磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)、鞘磷脂(SM), 神经酰胺(Cer), O-酰基-ω-羟基脂肪酸(OAHF)和二酰基甘油(DAG),其中组成TG的脂肪酸为379种,占34%,其组成也有较大的差异。【结论】昼夜节律显著地影响牛奶的营养组成、理化性质和小分子物质的组成,牛奶的分类、加工和食用应遵循其自身特点,以发挥其内在的生理功能,更好地为人类的健康服务。
杨改青, 王林枫, 李文清, 朱河水, 付彤, 廉红霞, 张立阳, 滕战伟, 张黎杰, 任宏, 徐新颖, 刘新鹤, 魏钰轩, 高腾云. 基于昼夜节律的牛奶品质研究[J]. 中国农业科学, 2023, 56(2): 379-390.
YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm[J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
表1
昼夜牛奶的营养组成、理化特性及相关激素水平"
项目 Item | 白天奶 Day-milk | 夜间奶 Night-milk | 标准误 SEM | P值 P-value |
---|---|---|---|---|
乳脂肪Milk fat (%) | 4.12 | 4.44 | 0.22 | 0.260 |
乳蛋白Milk protein (%) | 3.25 | 3.33 | 0.20 | 0.714 |
乳糖Milk lactose (%) | 4.85 | 4.89 | 0.12 | 0.771 |
总固形物Total milk solids (%) | 13.50 | 13.68 | 0.62 | 0.780 |
超氧化物歧化酶 SOD (μg·mL-1) | 1.27 | 1.37 | 0.07 | 0.212 |
谷胱甘肽过氧化物酶 GSH-Px (ng·mL-1) | 18.56 | 16.51 | 1.45 | 0.212 |
谷胱甘肽还原酶GR (ng·mL-1) | 1.90 | 1.97 | 0.27 | 0.806 |
丙二醛 MDA (ng·mL-1) | 6.01 | 5.24 | 0.33 | 0.044 |
褪黑素MT (pg·mL-1) | 90.21 | 120.07 | 7.21 | 0.002 |
皮质醇CORT (ng·mL-1) | 113.72 | 102.69 | 7.99 | 0.198 |
三碘甲腺原氨酸T3 (ng·mL-1) | 176.55 | 168.05 | 15.77 | 0.602 |
胰高血糖素GC (ng·mL-1) | 2.68 | 2.56 | 0.252 | 0.653 |
生长激素 GH (ng·mL-1) | 4.85 | 4.76 | 0.808 | 0.915 |
胰岛素 INS (ng·mL-1) | 0.81 | 0.80 | 0.087 | 0.910 |
肾上腺素ADR (ng·mL-1) | 10.32 | 8.25 | 0.996 | 0.065 |
表2
昼夜牛奶中相关的免疫因子"
项目Item | 白天奶Day-milk | 夜间奶Night-milk | 标准误SEM | P值P-value |
---|---|---|---|---|
免疫球蛋白A IgA (mg·mL-1) | 0.92 | 0.98 | 0.055 | 0.332 |
免疫球蛋白G IgG (mg·mL-1) | 3.67 | 3.72 | 0.334 | 0.876 |
肿瘤坏死因子α TNF-α (pg·mL-1) | 85.72 | 88.61 | 5.31 | 0.599 |
白介素1β IL-1β(pg·mL-1) | 78.60 | 73.93 | 8.87 | 0.611 |
白介素6 IL-6 (pg·mL-1) | 191.31 | 141.46 | 21.52 | 0.059 |
白介素8 IL-8 (pg·mL-1) | 64.79 | 68.56 | 4.44 | 0.416 |
干扰素γ IFN-γ(pg·mL-1) | 55.54 | 70.40 | 5.01 | 0.014 |
热休克蛋白70 HSP70 (ng·mL-1) | 5.50 | 4.19 | 0.36 | 0.005 |
热休克蛋白90 HSP90 (ng·mL-1) | 3.83 | 3.42 | 0.147 | 0.022 |
T-辅助淋巴细胞4 CD4 (ng·mL-1) | 4.23 | 3.97 | 0.264 | 0.374 |
T-抑制细胞8 CD8 (ng·mL-1) | 2.39 | 1.99 | 0.320 | 0.236 |
CD4/CD8 | 1.86 | 2.00 | 0.173 | 0.431 |
表3
脂质组学检测到昼夜牛奶中显著差异的甘油三酯"
脂质分子 Lipid ion | 脂质亚类 Class | 脂质分子式 Ion formula | 理论质荷比 CalMz | 保留时间 RT-(min) | 变量权重值 VIP | 变异倍数 FC | P值 P-value |
---|---|---|---|---|---|---|---|
TG(16:0/14:0/18:2)+NH4 | TG | C51 H98 O6 N1 | 820.74 | 22.95 | 0.58 | 2.54 | 0.019 |
TG(19:1/18:1/18:2)+NH4 | TG | C58 H108 O6 N1 | 914.82 | 23.30 | 0.54 | 1.62 | 0.023 |
TG(18:1/18:1/22:4)+NH4 | TG | C61 H110 O6 N1 | 952.83 | 23.20 | 0.70 | 1.51 | 0.030 |
[1] |
DAS R, SAILO L, VERMA N, BHARTI P, SAIKIA J, IMTIWATI, KUMAR R. Impact of heat stress on health and performance of dairy animals: a review. Veterinary World, 2016, 9(3): 260-268. doi:10.14202/vetworld.2016.260-268.
doi: 10.14202/vetworld.2016.260-268 pmid: 27057109 |
[2] |
LIU Z, EZERNIEKS V, WANG J, ARACHCHILLAGE N W, GARNER J B, WALES W J, COCKS B G, ROCHFORT S. Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 2017, 7: 961. doi:10.1038/s41598-017-01120-9.
doi: 10.1038/s41598-017-01120-9 pmid: 28424507 |
[3] |
JAEGGI J J, WENDORFF W L, ROMERO J, BERGER Y M, JOHNSON M E. Impact of seasonal changes in ovine milk on composition and yield of a hard-pressed cheese. Journal of Dairy Science, 2005, 88(4): 1358-1363. doi:10.3168/jds.S0022-0302(05)72802-2.
doi: 10.3168/jds.S0022-0302(05)72802-2 pmid: 15778303 |
[4] | WPCG W, HETTIARACHI S, MPK J. Factors affecting the quality of raw milk: effect of time taken for Transportation and practices at field level in small farms in SriLanka. Journal of Food and Dairy Technology, 2017. |
[5] |
HILL D L, WALL E. Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal, 2015, 9(1): 138-149. doi:10.1017/S1751731114002456.
doi: 10.1017/S1751731114002456 pmid: 25315451 |
[6] |
MCGRATH B A, FOX P F, MCSWEENEY P L H, KELLY A L. Composition and properties of bovine colostrum: a review. Dairy Science & Technology, 2016, 96(2): 133-158. doi:10.1007/s13594-015-0258-x.
doi: 10.1007/s13594-015-0258-x |
[7] |
TENG Z W, YANG G Q, WANG L F, FU T, LIAN H X, SUN Y, HAN L Q, ZHANG L Y, GAO T Y. Effects of the circadian rhythm on milk composition in dairy cows: does day milk differ from night milk? Journal of Dairy Science, 2021, 104(7): 8301-8313. doi:10.3168/jds.2020-19679.
doi: 10.3168/jds.2020-19679 |
[8] |
PATKE A, YOUNG M W, AXELROD S. Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular Cell Biology, 2020, 21(2): 67-84. doi:10.1038/s41580-019-0179-2.
doi: 10.1038/s41580-019-0179-2 pmid: 31768006 |
[9] |
ALBRECHT U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron, 2012, 74(2): 246-260. doi:10.1016/j.neuron.2012.04.006.
doi: 10.1016/j.neuron.2012.04.006 pmid: 22542179 |
[10] |
MARTCHENKO A, MARTCHENKO S E, BIANCOLIN A D, BRUBAKER P L. Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones. Endocrinology, 2020, 161(12): bqaa167. doi:10.1210/endocr/bqaa167.
doi: 10.1210/endocr/bqaa167 |
[11] |
PILORZ V, HELFRICH-FÖRSTER C, OSTER H. The role of the circadian clock system in physiology. Pflugers Archiv: European Journal of Physiology, 2018, 470(2): 227-239. doi:10.1007/s00424-017-2103-y.
doi: 10.1007/s00424-017-2103-y pmid: 29302752 |
[12] |
ITALIANER M F, NANINCK E F G, ROELANTS J A, VAN DER HORST G T J, REISS I K M, GOUDOEVER J, JOOSTEN K F M, CHAVES I, VERMEULEN M J. Circadian variation in human milk composition, a systematic review. Nutrients, 2020, 12(8): 2328. doi:10.3390/nu12082328.
doi: 10.3390/nu12082328 |
[13] | CASTRO N, SPENGLER M, LOLLIVIER V, WELLNITZ O, MEYER H H D, BRUCKMAIE R M. Diurnal pattern of melatonin in blood and milk of dairy cows. Milchwissenschaft, 2011, 66(4): 352-353. |
[14] |
TOUITOU Y, REINBERG A, TOUITOU D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sciences, 2017, 173: 94-106. doi:10.1016/j.lfs.2017.02.008.
doi: S0024-3205(17)30045-0 pmid: 28214594 |
[15] |
ZISAPEL N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. British Journal of Pharmacology, 2018, 175(16): 3190-3199. doi:10.1111/bph.14116.
doi: 10.1111/bph.14116 pmid: 29318587 |
[16] |
DELA PEÑA I J I, HONG E, DE LA PEÑA J B, KIM H J, BOTANAS C J, HONG Y S, HWANG Y S, MOON B S, CHEONG J H. Milk collected at night induces sedative and anxiolytic-like effects and augments pentobarbital-induced sleeping behavior in mice. Journal of Medicinal Food, 2015, 18(11): 1255-1261. doi:10.1089/jmf.2015.3448.
doi: 10.1089/jmf.2015.3448 pmid: 26501383 |
[17] |
VALTONEN M, NISKANEN L, KANGAS A P, KOSKINEN T. Effect of melatonin-rich night-time milk on sleep and activity in elderly institutionalized subjects. Nordic Journal of Psychiatry, 2005, 59(3): 217-221. doi:10.1080/08039480510023034.
doi: 10.1080/08039480510023034 pmid: 16195124 |
[18] |
GALANO A, TAN D X, REITER R J. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. Journal of Pineal Research, 2013, 54(3): 245-257. doi:10.1111/jpi.12010.
doi: 10.1111/jpi.12010 pmid: 22998574 |
[19] |
REITER R J, MAYO J C, TAN D X, SAINZ R M, ALATORRE- JIMENEZ M, QIN L L. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 2016, 61(3): 253-278. doi:10.1111/jpi.12360.
doi: 10.1111/jpi.12360 pmid: 27500468 |
[20] |
ZHONG J Y, LIU Y S. Melatonin and age-related cardiovascular diseases. Aging Medicine (Milton (N S W)), 2018, 1(2): 197-203. doi:10.1002/agm2.12036.
doi: 10.1002/agm2.12036 |
[21] |
BOGA J A, CABALLERO B, POTES Y, PEREZ-MARTINEZ Z, REITER R J, VEGA-NAREDO I, COTO-MONTES A. Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. Journal of Pineal Research, 2019, 66(1): e12534. doi:10.1111/jpi.12534.
doi: 10.1111/jpi.12534 |
[22] | 赵益文, 赵佳, 庞全海. 褪黑素对大鼠胰岛瘤细胞INS-1胰岛素和Gαi/o蛋白基因表达的影响. 中国农业科学, 2017, 50(17): 3429-3438. |
ZHAO Y W, ZHAO J, PANG Q H. Effect of melatonin on insulin and Gαi/o expression in rat insulinoma cell line. Scientia Agricultura Sinica, 2017, 50(17): 3429-3438. (in Chinese) | |
[23] | 顾沛沛, 丁春华. 牛奶的营养、功能与科学饮用[A]. 中国奶业协会. 第三届中国奶牛发展大会论文集[C]. 中国奶业协会, 2008, 3: 434-436. |
GU P P, DING C H. Nutrition, Function and Scientific drinking of milk[A]. Chinese Dairy Association. Proceedings of the third China Dairy Cow Development Conference[C]. Chinese Dairy Association, 2008, 3: 434-436. (in Chinese) | |
[24] |
CHEN C Y, YANG C, WANG J, HUANG X, YU H T, LI S M, LI S P, ZHANG Z J, LIU J J, YANG X F, LIU G P. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease. Journal of Pineal Research, 2021, 71(4): e12774. doi:10.1111/jpi.12774.
doi: 10.1111/jpi.12774 |
[25] |
SJÖBLOM M, FLEMSTRÖM G. Melatonin in the duodenal lumen is a potent stimulant of mucosal bicarbonate secretion. Journal of Pineal Research, 2003, 34(4): 288-293. doi:10.1034/j.1600-079x.2003.00044.x.
doi: 10.1034/j.1600-079x.2003.00044.x pmid: 12662352 |
[26] |
MACHURA E, MAZUR B, GOLEMIEC E, PINDEL M, HALKIEWICZ F. Staphylococcus aureus skin colonization in atopic dermatitis children is associated with decreased IFN-gamma production by peripheral blood CD4+ and CD8+ T cells. Pediatric Allergy and Immunology, 2008, 19(1): 37-45. doi:10.1111/j.1399-3038.2007.00586.x.
doi: 10.1111/j.1399-3038.2007.00586.x |
[27] |
MOCK J R, TUNE M K, DIAL C F, TORRES-CASTILLO J, HAGAN R S, DOERSCHUK C M. Effects of IFN-γ on immune cell kinetics during the resolution of acute lung injury. Physiological Reports, 2020, 8(3): e14368. doi:10.14814/phy2.14368.
doi: 10.14814/phy2.14368 |
[28] |
NAGAYACH R, GUPTA U D, PRAKASH A. Expression profiling of hsp70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Ruminant Research, 2017, 147: 41-47. doi:10.1016/j.smallrumres.2016.11.016.
doi: 10.1016/j.smallrumres.2016.11.016 |
[29] |
SEJIAN V, BAGATH M, KRISHNAN G, RASHAMOL V P, PRAGNA P, DEVARAJ C, BHATTA R. Genes for resilience to heat stress in small ruminants: a review. Small Ruminant Research, 2019, 173: 42-53. doi:10.1016/j.smallrumres.2019.02.009.
doi: 10.1016/j.smallrumres.2019.02.009 |
[30] |
GENEST O, WICKNER S, DOYLE S M. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. The Journal of Biological Chemistry, 2019, 294(6): 2109-2120. doi:10.1074/jbc.REV118.002806.
doi: 10.1074/jbc.REV118.002806 |
[31] |
MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiology International, 2012, 29(3): 227-251. doi:10.3109/07420528.2012.658127.
doi: 10.3109/07420528.2012.658127 pmid: 22390237 |
[32] |
WANG M, ZHOU Z, KHAN M J, GAO J, LOOR J J. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation. Journal of Dairy Science, 2015, 98(7): 4601-4612. doi:10.3168/jds.2015-9430.
doi: 10.3168/jds.2015-9430 pmid: 25912864 |
[33] |
KUMAR JHA P, CHALLET E, KALSBEEK A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and Cellular Endocrinology, 2015, 418: 74-88. doi:10.1016/j.mce.2015.01.024.
doi: 10.1016/j.mce.2015.01.024 |
[34] |
SANI M, GHANEM-BOUGHANMI N, GADACHA W, SEBAI H, BOUGHATTAS N A, REINBERG A, BEN-ATTIA M. Malondialdehyde content and circadian variations in brain, kidney, liver, and plasma of mice. Chronobiology International, 2007, 24(4): 671-685. doi:10.1080/07420520701535720.
doi: 10.1080/07420520701535720 pmid: 17701679 |
[35] |
VURAL H, SABUNCU T, ARSLAN S O, AKSOY N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Journal of Pineal Research, 2001, 31(3): 193-198. doi:10.1034/j.1600-079x.2001.310301.x.
doi: 10.1034/j.1600-079x.2001.310301.x pmid: 11589752 |
[36] |
SISCOVICK D S, BARRINGER T A, FRETTS A M, WU J H Y, LICHTENSTEIN A H, COSTELLO R B, KRIS-ETHERTON P M, JACOBSON T A, ENGLER M B, ALGER H M, APPEL L J, MOZAFFARIAN D. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease. Circulation, 2017, 135(15): e867-e884. doi:10.1161/cir.0000000000000482.
doi: 10.1161/cir.0000000000000482 |
[37] |
BILLMAN G E. The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: a critical reassessment. Pharmacology & Therapeutics, 2013, 140(1): 53-80. doi:10.1016/j.pharmthera.2013.05.011.
doi: 10.1016/j.pharmthera.2013.05.011 |
[38] |
BHATT D L, STEG P G, MILLER M, BRINTON E A, JACOBSON T A, KETCHUM S B, DOYLE R T Jr, JR J, JIAO L X, GRANOWITZ C, TARDIF J C, BALLANTYNE C M, INVESTIGATORS R I. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. The New England Journal of Medicine, 2019, 380(1): 11-22. doi:10.1056/NEJMoa1812792.
doi: 10.1056/NEJMoa1812792 pmid: 30415628 |
[39] | 钱俊青, 范菁, 童君, 龚峰. 多不饱和脂肪酸微胶囊改善小鼠学习记忆能力研究. 浙江工业大学学报, 2018, 46(1): 114-118. |
QIAN J Q, FAN J, TONG J, GONG F. Microencapsulation of polyunsaturated fatty acids improves learning and memory of mice. Journal of Zhejiang University of Technology, 2018, 46(1): 114-118. (in Chinese) | |
[40] |
陈英杰, 谢良杰, 庄耀东, 郭森仁. ω-3多不饱和脂肪酸对重型颅脑损伤患者伤后炎症反应和神经损害的影响. 中华临床营养杂志, 2015, 23(4): 224-228. doi:10.3760/cma.j.issn.1674-635X.2015.04.006.
doi: 10.3760/cma.j.issn.1674-635X.2015.04.006 |
CHEN Y J, XIE L J, ZHUANG Y D, GUO S R. Effect of omega-3 polyunsaturated fatty acids on the inflammatory response and nerve damage in severe traumatic brain injury patients. Chinese Journal of Clinical Nutrition, 2015, 23(4): 224-228. doi:10.3760/cma.j.issn.1674-635X.2015.04.006. (in Chinese)
doi: 10.3760/cma.j.issn.1674-635X.2015.04.006 |
|
[41] |
VOLPATO M, HULL M A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Reviews, 2018, 37(2/3): 545-555. doi:10.1007/s10555-018-9744-y.
doi: 10.1007/s10555-018-9744-y |
[42] |
TANAKA S, TATSUGUCHI A, FUTAGAMI S, GUDIS K, WADA K, SEO T, MITSUI K, YONEZAWA M, NAGATA K, FUJIMORI S, TSUKUI T, KISHIDA T, SAKAMOTO C. Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut, 2006, 55(1): 54-61. doi:10.1136/gut.2004.059824.
doi: 10.1136/gut.2004.059824 pmid: 16085694 |
[43] |
WANG C C, YANG C J, WU L H, LIN H C, WEN Z H, LEE C H. Eicosapentaenoic acid reduces indoleamine 2, 3-dioxygenase 1 expression in tumor cells. International Journal of Medical Sciences, 2018, 15(12): 1296-1303. doi:10.7150/ijms.27326.
doi: 10.7150/ijms.27326 |
[44] |
WANG C C, DU L, SHI H H, DING L, YANAGITA T, XUE C H, WANG Y M, ZHANG T T. Dietary EPA-enriched phospholipids alleviate chronic stress and LPS-induced depression- and anxiety-like behavior by regulating immunity and neuroinflammation. Molecular Nutrition & Food Research, 2021, 65(17): e2100009. doi:10.1002/mnfr.202100009.
doi: 10.1002/mnfr.202100009 |
[45] |
LAMBERT I H, KRISTENSEN D M, HOLM J B, MORTENSEN O H. Physiological role of taurine: from organism to organelle. Acta Physiologica (Oxford, England), 2015, 213(1): 191-212. doi:10.1111/apha.12365.
doi: 10.1111/apha.12365 |
[46] |
CHEN C R, XIA S F, HE J L, LU G L, XIE Z X, HAN H J. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sciences, 2019, 231: 116584. doi:10.1016/j.lfs.2019.116584.
doi: 10.1016/j.lfs.2019.116584 |
[47] |
MELNIKOV S, MAILLIOT J, RIGGER L, NEUNER S, SHIN B S, YUSUPOVA G, DEVER T E, MICURA R, YUSUPOV M. Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17(12): 1776-1784. doi:10.15252/embr.201642943.
doi: 10.15252/embr.201642943 pmid: 27827794 |
[48] |
CHAKRABORTY A. The inositol pyrophosphate pathway in health and diseases. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(2): 1203-1227. doi:10.1111/brv.12392.
doi: 10.1111/brv.12392 pmid: 29282838 |
[49] |
CHENG B, XIE R, DONG L, CHEN X. Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances. Chembiochem, 2016, 17(1): 11-27. doi:10.1002/cbic.201500344.
doi: 10.1002/cbic.201500344 pmid: 26573222 |
[50] | VALTONEN M, KANGAS A P, VOUTILAINEN M. Method for producing melatonin rich milk: Finland, PCT/ FI111324/WO001784(A1)[P]. 2001. |
[51] | BARRIE S H. Method for producing milk with an enhanced content of naturally expressed melatonin: UK, GB2387099(A)[P]. 2003. |
[52] | GNANN T. Method for the production of milk or milk products with a high proportion of melatonin: US8003130[P]. 2011-08-23. |
[53] |
张微, 赵广永, 张晓明, 莫放. 天然高褪黑素牛奶生产技术. 动物营养学报, 2016, 28(3): 635-640. doi:10.3969/j.issn.1006-267x.2016.03.001.
doi: 10.3969/j.issn.1006-267x.2016.03.001 |
ZHANG W, ZHAO G Y, ZHANG X M, MO F. Technology for production of cow' s milk rich in naturally expressed melatonin. Chinese Journal of Animal Nutrition, 2016, 28(3): 635-640. doi:10.3969/j.issn.1006-267x.2016.03.001. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.03.001 |
|
[54] | 王晓鹃, 刘磊, 焦洪超, 赵景鹏, 林海. 生物钟在蛋鸡排卵-产蛋过程中的调控作用. 中国农业科学, 2018, 51(16): 3181-3190. |
WANG X J, LIU L, JIAO H C, ZHAO J P, LIN H. Regulation of biological clock in ovulation-laying of laying hens. Scientia Agricultura Sinica, 2018, 51(16): 3181-3190. (in Chinese) | |
[55] |
崔家杰, 谢强, 翟双双, 龚涛, 朱勇文, 杨琳, 王文策. 光照强度对樱桃谷肉鸭c-fos、生物钟基因表达及褪黑激素的影响. 中国农业科学, 2020, 53(4): 848-856. doi:10.3864/j.issn.0578-1752.2020.04.016.
doi: 10.3864/j.issn.0578-1752.2020.04.016 |
CUI J J, XIE Q, ZHAI S S, GONG T, ZHU Y W, YANG L, WANG W C. Effects of light intensity on c-fos, biological clock gene expression and melatonin in cherry valley meat ducks. Scientia Agricultura Sinica, 2020, 53(4): 848-856. doi:10.3864/j.issn.0578-1752.2020.04.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.04.016 |
|
[56] |
FARHADIPOUR M, DEPOORTERE I. The function of gastrointestinal hormones in obesity-implications for the regulation of energy intake. Nutrients, 2021, 13(6): 1839. doi:10.3390/nu13061839.
doi: 10.3390/nu13061839 |
[57] | 霍伟, 陶树清. 褪黑素治疗骨质疏松的研究进展. 中国骨质疏松杂志, 2021, 27(1): 148-152. |
HUO W, TAO S Q. Research progress of melatonin in the treatment of osteoporosis. Chinese Journal of Osteoporosis, 2021, 27(1): 148-152. (in Chinese) | |
[58] | 黄冲, 刘金钊. 褪黑素对老年性骨质疏松症骨代谢的研究现状与展望. 中国骨质疏松杂志, 2011, 17(2): 176-180. |
HUANG C, LIU J Z. Progress and prospect of effect of melatonin on bone metabolism of senile osteoporsis. Chinese Journal of Osteoporosis, 2011, 17(2): 176-180. (in Chinese) | |
[59] | 陈维凯. 褪黑素通过SIRT1介导的抗氧化机制调控骨质疏松症防治的研究[D]. 苏州: 苏州大学, 2020. |
CHEN W K. Melatonin treats osteoporosis via SIRT1-mediated antioxidant mechanisms[D]. Suzhou: Soochow University, 2020. (in Chinese) | |
[60] | 王超炜. 褪黑素通过调控成骨/破骨分化平衡延缓骨质疏松症进程的机制研究[D]. 杭州: 浙江大学, 2020. |
WANG C W. The study of melatonin in alleviating osteoporosis by regulating balance between osteogenesis and osteoclastogenesis[D]. Hangzhou: Zhejiang University, 2020. (in Chinese) | |
[61] |
SINGH S, ARORA R R, SINGH M, KHOSLA S. Eicosapentaenoic acid versus docosahexaenoic acid as options for vascular risk prevention: a fish story. American Journal of Therapeutics, 2016, 23(3): e905-e910. doi:10.1097/MJT.0000000000000165.
doi: 10.1097/MJT.0000000000000165 |
[62] |
MACARON T, GIUDICI K V, BOWMAN G L, SINCLAIR A, STEPHAN E, VELLAS B, DE SOUTO BARRETO P. Associations of Omega-3 fatty acids with brain morphology and volume in cognitively healthy older adults: a narrative review. Ageing Research Reviews, 2021, 67: 101300. doi:10.1016/j.arr.2021.101300.
doi: 10.1016/j.arr.2021.101300 |
[1] | 肖璐婷,李秀红,刘栗君,叶发银,赵国华. 淀粉粒径对大麦淀粉物化特性的影响[J]. 中国农业科学, 2022, 55(5): 1010-1024. |
[2] | 马高兴,陶天艺,裴斐,方东路,赵立艳,胡秋辉. 不同炒制条件对预制菜肴中双孢蘑菇风味的影响[J]. 中国农业科学, 2022, 55(3): 575-588. |
[3] | 黄翀,侯相君. 基于Bi-LSTM模型的时间序列遥感作物分类研究[J]. 中国农业科学, 2022, 55(21): 4144-4157. |
[4] | 张春桃,马涛,屠焰,刁其玉. 昼夜节律与肉羊养分消化代谢和瘤胃发酵参数的关联[J]. 中国农业科学, 2022, 55(18): 3664-3674. |
[5] | 郭灿,岳晓凤,白艺珍,张良晓,张奇,李培武. 花生黄曲霉毒素平衡取样-随机森林风险预警模型的应用研究[J]. 中国农业科学, 2022, 55(17): 3426-3436. |
[6] | 申哲,张认连,龙怀玉,徐爱国. 基于机器学习方法的宁夏南部土壤质地空间分布研究[J]. 中国农业科学, 2022, 55(15): 2961-2972. |
[7] | 黄雨晴,孙艳艳,罗荣峥,阿旺措姆,卢素文,樊秀彩,王晨,刘崇怀,房经贵. 葡萄种质资源花穗形状分类标准的建立及其动态发育过程分析[J]. 中国农业科学, 2021, 54(11): 2389-2405. |
[8] | 张陇艳,程功敏,魏恒玲,王寒涛,芦建华,马峙英,喻树迅. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定[J]. 中国农业科学, 2021, 54(1): 19-33. |
[9] | 赵静,李志铭,鲁力群,贾鹏,杨焕波,兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555. |
[10] | 张继峯,王振华,张金珠,窦允清,侯裕生. 滴灌下氮盐交互对加工番茄荧光特性及产量品质的影响[J]. 中国农业科学, 2020, 53(5): 990-1003. |
[11] | 钟亮,郭熙,国佳欣,韩逸,朱青,熊杏. 基于数据挖掘技术的高光谱土壤质地分类研究[J]. 中国农业科学, 2020, 53(21): 4449-4459. |
[12] | 许世卫,邸佳颖,李干琼,庄家煜. 农产品监测预警模型集群构建理论方法与应用[J]. 中国农业科学, 2020, 53(14): 2859-2871. |
[13] | 姬旭升,李旭,万泽福,姚霞,朱艳,程涛. 基于高空间分辨率卫星影像的新疆阿拉尔市棉花与枣树分类[J]. 中国农业科学, 2019, 52(6): 997-1008. |
[14] | 王玉斌, 平俊爱, 牛皓, 楚建强, 杜志宏, 吕鑫, 李慧明, 张福耀. 粒用高粱种质中后期抗旱性鉴定筛选与分类指标评价[J]. 中国农业科学, 2019, 52(22): 4039-4049. |
[15] | 曹海潮,刘庆顺,白海秀,韩君,杨士玲,薛明,刘峰. 30%噻虫胺·吡唑醚菌酯·苯醚甲环唑悬浮种衣剂的研制 及其在花生田应用的效果[J]. 中国农业科学, 2019, 52(20): 3595-3604. |
|