中国农业科学 ›› 2022, Vol. 55 ›› Issue (24): 4793-4807.doi: 10.3864/j.issn.0578-1752.2022.24.002
谢伶俐1,2(),韦丁一1,2(
),章子爽1,2,徐劲松1,3,张学昆1,3(
),许本波1,2(
)
收稿日期:
2022-07-31
接受日期:
2022-09-05
出版日期:
2022-12-16
发布日期:
2023-01-04
通讯作者:
张学昆,许本波
作者简介:
谢伶俐,E-mail:基金资助:
XIE LingLi1,2(),WEI DingYi1,2(
),ZHANG ZiShuang1,2,XU JinSong1,3,ZHANG XueKun1,3(
),XU BenBo1,2(
)
Received:
2022-07-31
Accepted:
2022-09-05
Online:
2022-12-16
Published:
2023-01-04
Contact:
XueKun ZHANG,BenBo XU
摘要:
【目的】中国甘蓝型油菜品系与欧洲甘蓝型油菜品系存在较大的遗传差异,二者组配的杂种F1产量优势明显。测定不同来源的甘蓝型油菜发育进程中GA的动态变化,研究GA含量与亲本及杂种F1产量的关系,分析亲本及杂种后代GA合成途径关键酶基因的转录水平,为探明GA对甘蓝型油菜生长发育的影响及其在产量形成过程中的作用奠定基础。【方法】2020年11月至2021年5月,利用高效液相色谱法测定15个不同来源的中国甘蓝型油菜品系及15个欧洲甘蓝型油菜品系GA含量的动态变化;2021年11月至2022年5月,以杂种F1产量优势较强的YG2009×YC4、ZS11×YC4及其亲本YG2009、ZS11、YC4为材料,考察3个不同时期(D1:2022年1月15日;D2:2022年2月15日;D3:2022年3月15日)亲本及杂种F1的GA含量变化、生长指标(株高、根长和鲜重等)、产量及构成因子(单株角果数、角粒数和千粒重)和光合指标(光合速率、气孔导度、蒸腾速率和胞间CO2浓度),分析GA含量随温度变化的趋势,GA含量与亲本及杂种F1的农艺性状、光合特性和产量的关系,并利用实时荧光定量PCR技术,分析亲本及杂种F1不同时期(D1、D2和D3)GA合成途径关键酶基因的转录水平变化。【结果】GA总量与环境温度密切相关,供试甘蓝型油菜GA含量随温度的变化均呈先降低后升高的趋势,但来源于欧洲的甘蓝型油菜品系平均GA含量高于中国品系。F1产量表现为明显的优势,YG2009×YC4产量比其父、母本分别提高18.06%和10.35%;ZS11×YC4产量比其父、母本分别提高29.92%和28.6%。亲本和杂种F1的部分农艺性状差异显著,产量与GA含量存在相关性。亲本及杂种F1中GA20ox4、GA3ox2及SLR1转录水平的变化较大。【结论】来源于欧洲的甘蓝型油菜品系GA总量高于中国油菜品系,而且对温度变化更加敏感;欧洲油菜和中国油菜品系杂交能产生产量杂种优势,其杂种优势与GA含量存在一定相关性;在发育过程中,欧洲油菜和中国油菜品系及其F1中GA20ox4、GA3ox2的变化与GA含量密切相关。
谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807.
XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L.[J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
表1
qRT-PCR所用引物序列"
基因名称 Gene names | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
BnCPS | TCATCCTCGCTTTGTTCGTCTC | GCTCCATCTCATTCTCCATTCTC |
BnKS1 | AAGACAATGGCAGCGAAGAGG | CACTCCCTTGGAACCACACTCC |
BnKO | CGTCTCTTATGGCAGGGATTGC | ATCAACATTCTCTTCCTCACCGTC |
BnKAO | GGAAGGATACATACCAAAGGCA | TCCTTTGGTCTTGTGTGAGGCA |
BnGA20ox1 | ACGGCAACACACCAAGGAGATA | TGAGCCAATCTGTGAAAGCCTG |
BnGA20ox4 | CACTGCGATCCAACATCTCTAACC | CACTAAGGCTCGATGCAAGCAACT |
BnGA3ox2 | CACCTGTCCCTGGCTCACTA | GGGTAAAGAGGAGAATGGAGAAG |
BnGA2ox6 | CTGAGAGGCGTTAGCCAAATAGG | CGAGGCTTCCCTGCCGTGTTAG |
BnGID1 | GAGTCTTGTCGTTGTGGCGG | TTAGGCAACAAGTAGAACCCAATG |
BnGID2 | AACGGTGACGCGAGTAACAAGAAG | AGCGAGTGGAGTTGTTTGAAGCCG |
BnSLR1 | GAAAGAATGTGAGAAGAGGTGCC | TTCCGCATATCGTCAAGCCGT |
BnD1 | CCATCAGCGAGTACGACCAAAC | TGATCCAAAGCCGTCGTCCTGTAGA |
BnACT | CTGGAATTGCTGACCGTATGAG | ATCTGTTGGAAAGTGCTGAGGG |
表2
亲本及杂种F1产量及产量构成分析"
材料 Material | 单株角果数 Effective pods per plant | 每角粒数 Seeds per pod | 千粒重 1000-seed weight (g) | 单株产量 Yield per plant (g) | 实际产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
YG2009 | 268.75±16.39a | 19.50±0.65c | 3.79±0.01d | 19.85±0.22c | 2967.30±5.77c |
ZS11 | 174.75±2.39b | 20.25±0.48bc | 4.66±0.02a | 16.85±0.08d | 2785.80±8.66d |
YC4 | 164.75±5.54b | 20.50±0.29abc | 4.52±0.02b | 15.30±0.11e | 2757.60±2.89e |
YG2009×YC4 | 255.50±11.70a | 21.25±0.25ab | 4.28±0.01c | 22.20±0.19b | 3255.60±3.26b |
ZS11×YC4 | 273.25±11.45a | 21.50±0.65a | 4.32±0.01c | 25.35±0.14a | 3582.60±6.06a |
表3
亲本及杂种F1农艺性状分析"
日期 Date | 材料 Material | 株高 Plant height (cm) | 叶片数 Leaf number | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 根长 Root length (cm) | 鲜重 Fresh weight (g) | 干重 Dry weight (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | YG2009 | 52.0±1.5b | 10.3±0.3b | 18.7±1.1ab | 15.1±0.5a | 15.1±0.9a | 202.6±5.3b | 20.2±0.3b | |||||||
ZS11 | 57.2±0.6a | 11.7±0.3a | 16.5±0.8b | 13.7±1.3ab | 14.4±0.7a | 196.5±21.3b | 18.6±2.3b | ||||||||
YC4 | 40.5±1.5c | 10.7±0.7ab | 13.9±0.7c | 12.6±0.6b | 17.0±1.2a | 147.7±6.4c | 19.5±0.5b | ||||||||
YG2009×YC4 | 57.5±0.6a | 11.7±0.3a | 20.2±0.5a | 15.5±0.2a | 18.6±1.6a | 264.3±8.6a | 31.1±0.4a | ||||||||
ZS11×YC4 | 59.4±0.3a | 10.0±0.0b | 21.0±0.3a | 15.9±0.2a | 17.3±2.1a | 192.8±11.8b | 18.4±1.2b | ||||||||
D2 | YG2009 | 57.5±1.3b | 10.0±0.6bc | 20.2±0.7b | 16.7±0.4b | 18.0±0.6b | 254.1±3.0b | 30.0±0.6b | |||||||
ZS11 | 69.5±0.9a | 12.0±0.6a | 22.2±1.3ab | 14.3±0.4c | 18.1±0.3b | 415.9±8.5a | 53.0±2.6a | ||||||||
YC4 | 45.3±1.5c | 9.0±0.6c | 16.6±1.0c | 13.93±1.0c | 20.0±0.6a | 112.3±6.2d | 18.4±0.4c | ||||||||
YG2009×YC4 | 60.3±1.5b | 12.0±0.6a | 24.3±0.7a | 19.7±0.7a | 20.2±0.4a | 254.9±3.2b | 32.3±0.4b | ||||||||
ZS11×YC4 | 69.3±0.9a | 11.0±0.6ab | 21.2±0.6b | 16.5±0.3b | 19.2±0.4ab | 233.9±4.1c | 28.8±0.6b | ||||||||
D3 | YG2009 | 83.3±3.8b | 17.0±0.6c | 21.0±0.6d | 19.2±0.4b | 19.0±0.6d | 390.9±5.0d | 66.8±2.3d | |||||||
ZS11 | 111.3±1.9a | 28.7±0.9a | 24.0±0.6c | 19.5±0.3ab | 21.3±0.3cd | 1234.9±4.0a | 159.6±2.4a | ||||||||
YC4 | 47.3±1.8c | 14.3±0.3d | 17.0±0.6e | 15.0±0.6c | 22.7±0.9bc | 163.6±4.5e | 24.4±2.8e | ||||||||
YG2009×YC4 | 89.0±0.6b | 17.3±0.9c | 26.7±0.9b | 21.5±1.0a | 26.0±0.6a | 536.8±2.7c | 121.3±1.9c | ||||||||
ZS11×YC4 | 118.0±1.15a | 21.7±0.3b | 30.0±0.6a | 21.0±0.6ab | 24.3±1.2ab | 881.9±5.8b | 142.4±3.3b | ||||||||
方差分析Variance analysis | |||||||||||||||
D1 | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | |
YG2009×YC4 | ** | ** | * | NS | NS | ** | NS | * | NS | NS | ** | ** | ** | ** | |
ZS11×YC4 | NS | ** | ↓* | NS | ** | ** | NS | * | NS | NS | NS | * | NS | NS | |
D2 | YG2009×YC4 | NS | ** | * | ** | ** | ** | ** | ** | * | NS | NS | ** | NS | ** |
ZS11×YC4 | NS | ** | NS | * | NS | ** | * | * | NS | NS | ↓** | ** | ↓** | ** | |
D3 | YG2009×YC4 | NS | ** | NS | ** | ** | ** | * | ** | ** | * | ** | ** | ** | ** |
ZS11×YC4 | NS | ** | ↓** | ** | ** | ** | NS | ** | * | NS | ↓** | ** | ↓** | ** |
[1] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5): 613-617. |
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 613-617. (in Chinese) | |
[2] | 姚琳, 孙璇, 咸栓狮, 杜春芳. 甘蓝型油菜籽粒油酸、亚油酸、亚麻酸和蛋白质含量变异及相关性分析. 中国粮油学报, 2021, 36(5): 82-87. |
YAO L, SUN X, XIAN S S, DU C F. Variation and correlation analysis of oleic acid, linoleic acid, linolenic acid and protein content in Brassica napus seeds. Journal of the Chinese Cereals and Oils Association, 2021, 36(5): 82-87. (in Chinese) | |
[3] | 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21(1): 1-19. |
LI L X, CHEN B Y, YAN G X, GAO G Z, XU K, XIE T, ZHANG F G, WU X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. Journal of Plant Genetic Resources, 2020, 21(1): 1-19. (in Chinese) | |
[4] | 胡鸣, 姚圣黎, 程晓晖, 刘越英, 马立新, 向阳, 黄军艳, 童超波, 刘胜毅. 基于高深度重测序的春性、半冬性和冬性甘蓝型油菜基因组遗传变异分析. 中国油料作物学报, 2018, 40(4): 469-478. |
HU M, YAO S L, CHENG X H, LIU Y Y, MA L X, XIANG Y, HUANG J Y, TONG C B, LIU S Y. Genomic variation of spring, semi-winter and winter Brassica napus by high-depth DNA re-sequencing. Chinese Journal of Oil Crop Science, 2018, 40(4): 469-478. (in Chinese) | |
[5] |
姚艳梅, 柳海东, 徐亮, 杜德志. 以半冬性甘蓝型油菜为亲本增强春性甘蓝型油菜杂种优势. 作物学报, 2013, 39(1): 118-125.
doi: 10.3724/SP.J.1006.2013.00118 |
YAO Y M, LIU H D, XU L, DU D Z. Enhancing the heterosis of spring rapeseed varieties (Brassica napus L.) by using semi-winter rapeseed varieties as parents. Acta Agronomica Sinica, 2013, 39(1): 118-125. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00118 |
|
[6] |
CARRERA E, BOU J, GARCIA-MARTINE J L, PRAT S. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal, 2000, 22(3): 247-256.
doi: 10.1046/j.1365-313x.2000.00736.x |
[7] |
SAKAMOTO T, MIURA K, ITOH H, TATSUMI T, UEGUCHI- TANAKA M, ISHIYAMA K, KOBAYASHI M, AGRAWAL G K, TAKEDA S, ABE K, MIYAO A, HIROCHIKA H, KITANO H, ASHIKARI M, MATSUOKA M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 2004, 134(4): 1642-1653.
pmid: 15075394 |
[8] | VERA-SIRERA F, GOMEZ M D, PEREZ-AMADOR M A. Chapter 20-DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. Plant Transcription Factors, 2016: 313-328. |
[9] |
SHEN G, HE W, ZHANG B, XING Y Z. The regulatory network mediated by circadian clock genes is related to heterosis in rice. Journal of Integrative Plant Biology, 2015, 57(3): 300-312.
doi: 10.1111/jipb.12240 |
[10] |
SHENG J Y, LI X, ZHANG D. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal, 2022, 8(2): 243-250.
doi: 10.1016/j.hpj.2021.06.002 |
[11] |
ZANEWICH K P, ROOD S B. Gibberellins and heterosis in crops and trees: An integrative review and preliminary study with Brassica. Plants, 2020, 9(2): 139.
doi: 10.3390/plants9020139 |
[12] |
MA Q, HEDDEN P, ZHANG Q F. Heterosis in rice seedlings: Its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiology, 2011, 156(4): 1905-1920.
doi: 10.1104/pp.111.178046 pmid: 21693671 |
[13] |
NICKERSON H. Sustained treatment with gibberellic acid of five different kinds of maize. Annals of the Missouri Botanical Garden, 1959, 46(1/2): 19-37.
doi: 10.2307/2394566 |
[14] |
ZHANG Y, NI Z F, YAO Y Y, NIE X L, SUN Q X. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genetics, 2007, 8(1): 40.
doi: 10.1186/1471-2156-8-40 |
[15] | 石建斌, 王宁, 周红, 许庆华, 乔文青, 严根土. 不同生态条件下棉花赤霉素合成代谢途径关键酶基因差异表达分析. 中国农业大学学报, 2019, 24(1): 6-13. |
SHI J B, WANG N, ZHOU H, XU Q H, QIAO W Q, YAN G T. Differential expression of the key enzyme of gibberellins biosynthesis pathway in cotton under different ecological conditions. Journal of China Agricultural University, 2019, 24(1): 6-13. (in Chinese) | |
[16] |
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7): 1-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447 |
GAO X H, FU X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7): 1-13. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447 |
|
[17] |
SU S, HONG J, CHEN X F, ZHANG C Q, CHEN M J, LUO Z J, CHANG S W, BAI S X, LIANG W Q, LIU Q Q, ZHANG D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnology Journal, 2021, 19(11): 2304-2318.
doi: 10.1111/pbi.13661 pmid: 34245650 |
[18] | 徐爱军, 高桂枝, 汤莉莉. 梯度洗脱测定植物源调节剂中内源激素方法探讨. 分析试验室, 2007, 26(9): 51-55. |
XU A J, GAO G Z, TANG L L. Study on the determination of intrinsic hormones in plant growth regulator from plants by HPLC with gradient elution. Chinese Journal of Analysis Laboratory, 2007, 26(9): 51-55. (in Chinese) | |
[19] | 胡巍, 侯喜林, 史公军. 植物春化特性及春化作用机理. 植物学通报, 2004, 21(1): 26-36. |
HU W, HOU X L, SHI G J. Characteristics and mechanism of plant vernalization. Chinese Bulletin of Botany, 2004, 21(1): 26-36. (in Chinese) | |
[20] | FINNEGAN E J, GENGER R K, KOVAC K, PEACOCK W J, DENNIS E S. DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences of the USA, 1998, 95(10): 5824-5829. |
[21] |
BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131.
doi: 10.1111/jipb.12892 |
[22] |
LIU W W, ZHANG Y L, HE H, HE G M, DENG X W. From hybrid genomes to heterotic trait output: Challenges and opportunities. Current Opinion in Plant Biology, 2022, 66: 102193-102214.
doi: 10.1016/j.pbi.2022.102193 |
[23] | 刘增兵, 姜景彬, 杨欢欢, 姜秀明, 李景富. 植物杂种优势的研究进展. 分子植物育种, 2019, 17(12): 4127-4134. |
LIU Z B, JIANG J B, YANG H H, JIANG X M, LI J F. Research advance of plant heterosis. Molecular Plant Breeding, 2019, 17(12): 4127-4134. (in Chinese) | |
[24] | 卢晶, 张金文, 刘海卿, 宋展树, 乔岩, 王志伟, 王克婧. 北方白菜型冬油菜越冬率、产量及相关性状杂种优势分析. 西南农业学报, 2016, 29(9): 2020-2026. |
LU J, ZHANG J W, LIU H Q, SONG Z S, QIAO Y, WANG Z W, WANG K J. Heterosis analysis of overwintering rate,yield and related traits of Brassica rape winter rape in the North China. Southwest China Journal of Agricultural Sciences, 2016, 29(9): 2020-2026. (in Chinese) | |
[25] | 张书芬, 马朝芝, 朱家成, 王建平, 文雁成, 傅廷栋. 甘蓝型油菜主要农艺和产量性状的杂种优势及其分离世代的分析. 中国油料作物学报, 2007, 29(2): 15-19. |
ZHANG S F, MA C Z, ZHU J C, WANG J P, WEN Y C, FU T D. Heterosis and segregation on agronomic and yield traits in Brassica napus L.. Chinese Journal of Oil Crop Sciences, 2007, 29(2): 15-19. (in Chinese) | |
[26] |
IWAMOTO M, KIYOTA S, HANADA A, YAMAGUCHI S, TAKANO M. The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiology, 2011, 157(3): 1187-1195.
doi: 10.1104/pp.111.184861 pmid: 21911595 |
[27] |
LI J, JIANG J F, QIAN Q, XU Y Y, ZHANG C, XIAO J, DU C, LUO W, ZOU G X, CHEN M L, HUANG Y Q, FENG Y Q, CHENG Z K, YUAN M, CHONG K. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. The Plant Cell, 2011, 23(2): 628-640.
doi: 10.1105/tpc.110.081901 |
[28] | DING L H, WANG Y W, YU H. Overexpression of DOSOC1, an ortholog of ArabidopsisSOC1, promotes flowering in the orchid dendrobium chao parya smile. Plant & Cell Physiology, 2013, 54(4): 595-608. |
[29] |
HYUN Y, RICHTER R, VINCENT C, MARTINEZ-GALLEGOS R, PORRI A, COUPLAND G. Multi-layered regulation of SPL15and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Developmental Cell, 2016, 37(3): 254-266.
doi: 10.1016/j.devcel.2016.04.001 |
[30] |
QIN F, KODAIRA K S, MARUYAMA K, MIZOI J, TRAN L P, FUJITA Y, MORIMOTO K, SHINOZAKI K, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiology, 2011, 157(4): 1900-1913.
doi: 10.1104/pp.111.187302 pmid: 22013217 |
[31] |
HAMAYUN M, HUSSAIN A, KHAN S A, KIM H, KHAN A, WAQAS M, IRSHAD M, IQBAL A, REHMAN G, JAN S, LEE I. Gibberellins producing endophytic fungus porostereumspadiceumAGH786 rescues growth of salt affected soybean. Frontiers in Microbiology, 2017, 8: 686.
doi: 10.3389/fmicb.2017.00686 |
[32] |
URANO K, MARUYAMA K, JIKUMARU Y, KAMIYA Y, YAMAGUCHI-SHINOZAKI Y, SHINOZAKI K. Analysis of plant hormone profiles in response to moderate dehydration stress. The Plant Journal, 2017, 90(1): 17-36.
doi: 10.1111/tpj.13460 pmid: 27995695 |
[33] | WANG B L, WEI H F, XUE Z, ZHANG W H. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Annals of Botany, 2017, 119(6): 945-956. |
[34] |
SHU K, ZHOU W G, CHEN F, LUO X F, YANG W Y. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 2018, 9: 416.
doi: 10.3389/fpls.2018.00416 pmid: 29636768 |
[35] |
PENG J R, CAROL P, RICHARDS D E, KING K E, COWLING R J, MURPHY G P, HARBERD N P. The ArabidopsisGA1 gene defines a signaling pathway that negatively regulates gibberellin. Genes & Development, 1997, 11(23): 3194-3205.
doi: 10.1101/gad.11.23.3194 |
[36] |
MCGINNIS K M, THOMAS S G, SOULE J D, STRADER L C, ZALE J M, SUN T P, STEBER C M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell, 2003, 15(5): 1120-1130.
doi: 10.1105/tpc.010827 |
[37] |
MILLER J, GORDON C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Letters, 2005, 579(15): 3224-3230.
pmid: 15943965 |
[38] |
YAN B Q, YANG Z J, HE G H, JING Y X, DONG H X, JU L, ZHANG Y W, ZHU Y F, ZHOU Y, SUN J Q. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. Plant Communications, 2021, 2(6): 100245.
doi: 10.1016/j.xplc.2021.100245 |
[39] |
ACHARD P, VRIEZEN W H, STRAETEN D V D, HARBERD N P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell, 2003, 15(12): 2816-2825.
doi: 10.1105/tpc.015685 |
[40] | SUN J P, QI LL, LI Y N, CHU J F, LI C Y. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genetics, 2012, 8(3): e1002594. |
[41] |
STAVANG J A, GALLEGO-BARTOLOMÉ J, GÓMEZ M D, YOSHIDA S, ASAMI T, OLSEN J E, GARCÍA-MARTÍNEZ J L, ALABADÍ D, BLÁZQUEZ M A. Hormonal regulation of temperature induced growth in Arabidopsis. The Plant Journal, 2009, 60(4): 589-601.
doi: 10.1111/j.1365-313X.2009.03983.x |
[42] |
LUCAS M D, DAVIÈRE J M, RODRÍGUEZ-FALCÓN M, PONTIN M, IGLESIAS-PEDRAZ J M, LORRAIN S, FANKHAUSER C, BLÁZQUEZ M A, TITARENKO E, PRAT S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484.
doi: 10.1038/nature06520 |
[43] |
STAVANG J A, GALLEGE-BARTOLOMÉ J, GÓMEZ M D, YOSHIDA S, ASAMI T, OLSEN J E, GARCÍAMARTÍNEZ J L, ALABADÍ D, BLÁZQUEZ M A. Hormonal regulation of temperature induced growth in Arabidopsis. The Plant Journal, 2009, 60: 589-601.
doi: 10.1111/j.1365-313X.2009.03983.x |
[44] |
GANGAPPA S N, BERRIRI S, KUMAR S V. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Current Biology, 2017, 27(2): 243-249.
doi: 10.1016/j.cub.2016.11.012 |
[45] |
PAIK I, KATHARE P K, KIM J I, HUQ E. Expanding roles of PIFs in signal integration from multiple processes. Molecular Plant, 2017, 10(8): 1035-1046.
doi: S1674-2052(17)30198-3 pmid: 28711729 |
[46] |
OH E, ZHU J Y, WANG Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14(8): 802-809.
doi: 10.1038/ncb2545 |
[47] |
FERREROL V, VIOLAI L, ARIEL F D, GONZALEZ D H. Class I TCP transcription factors target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis. Plant and Cell Physiology, 2019, 60(8): 1633-1645.
doi: 10.1093/pcp/pcz137 |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|