中国农业科学 ›› 2022, Vol. 55 ›› Issue (18): 3600-3612.doi: 10.3864/j.issn.0578-1752.2022.18.010
范子晗(),罗雅尹,熊华烨,张育文,康福蓉,王昱桁,王洁,石孝均,张跃强(
)
收稿日期:
2021-08-11
接受日期:
2021-09-17
出版日期:
2022-09-16
发布日期:
2022-09-22
通讯作者:
张跃强
作者简介:
范子晗,E-mail: 基金资助:
ZiHan FAN(),YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG(
)
Received:
2021-08-11
Accepted:
2021-09-17
Online:
2022-09-16
Published:
2022-09-22
Contact:
ZHANG YueQiang
摘要:
【目的】通过监测铵态氮水平对不同pH土壤溶液的影响,结合对香橙砧木幼苗生长及生理指标的影响研究,阐述柑橘对铵态氮的响应过程,为酸性土壤中柑橘氮素优化管理提供理论支撑。【方法】试验为双因素设计,主处理为2种土壤,副处理为5个铵态氮水平。以酸性黄壤和石灰性紫色土为供试土壤,选用香橙砧木幼苗为试验材料,设置0(A0)、50(A50)、100(A100)、200(A200)、400 mg·kg-1(A400)5个铵态氮水平,研究施铵态氮水平对土壤溶液铵态氮、硝态氮浓度变化及对柑橘生长、根系形态及活力、氮素吸收代谢、抗氧化酶系统和丙二醛含量的影响。【结果】与石灰性土壤相比,酸性土壤硝化过程减缓,其土壤溶液中铵态氮浓度和铵硝比在试验30 d时仍维持较高水平。与A0处理相比,A400处理的柑橘根长降低13%,且根系活力与铵态氮水平呈显著负相关。叶片和根系的丙二醛含量与铵态氮水平呈正相关,并激发了氧化应激反应,尤其增加了叶片POD酶活性。与石灰性土壤相比,酸性土壤中柑橘总氮积累降低17.6%,但叶片和根系中铵硝比分别升高了27.2%和61.1%。聚类分析表明,酸性土壤中生长的柑橘在施氮量超过100 mg·kg-1时受到毒害,碱性土壤中生长的柑橘则没有受到明显毒害。【结论】酸性土壤中,铵态氮施用过量引起土壤溶液中铵态氮长时间累积,造成丙二醛含量增加、细胞膜受损和氮代谢失调等铵毒害现象,表明柑橘铵毒害与土壤硝化作用密切相关。
范子晗,罗雅尹,熊华烨,张育文,康福蓉,王昱桁,王洁,石孝均,张跃强. 酸性土壤硝化作用对柑橘铵毒害的效应[J]. 中国农业科学, 2022, 55(18): 3600-3612.
ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil[J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
表1
铵态氮供应水平对柑橘生物量的影响"
处理 Treatment | 茎 Stem (g/pot) | 叶 Leaf (g/pot) | 地上部 Aboveground (g/pot) | 根 Root (g/pot) | 总生物量 Total biomass (g/pot) | 根冠比 Root shoot ratio (%) |
---|---|---|---|---|---|---|
土壤类型Soil type | ||||||
酸性土壤Acid soil | 1.15 b | 1.94 b | 3.09 b | 1.94 a | 5.03 b | 62.7 a |
石灰性土壤Calcareous soil | 1.70 a | 2.06 a | 3.76 a | 1.98 a | 5.74 a | 53.0 a |
施氮处理N treatment | ||||||
A0 | 1.33 a | 1.88 b | 3.21 b | 2.00 a | 5.21 a | 62.3 a |
A50 | 1.41 a | 2.04 ab | 3.45 ab | 1.94 a | 5.39 a | 56.2 a |
A100 | 1.47 a | 2.26 a | 3.73 a | 2.04 a | 5.77 a | 54.7 a |
A200 | 1.55 a | 1.92 b | 3.47 ab | 1.95 a | 5.42 a | 56.2 a |
A400 | 1.39 a | 1.92 b | 3.31 ab | 1.88 a | 5.19 a | 56.8 a |
变异来源Source of variation | ||||||
施氮处理N treatment (N) | ns | *** | *** | ns | *** | *** |
土壤类型Soil type (S) | *** | *** | *** | ns | *** | ns |
施氮×土壤类型N×S | ns | *** | *** | ns | *** | ns |
表2
两种土壤中铵态氮供应水平对柑橘幼苗根系形态的影响"
处理 Treatment | 根长 Root length (cm/plant) | 根表面积 Root area (cm2/plant) | 根体积 Root volume (cm3/plant) | 平均根直径 Mean root diameter (mm) |
---|---|---|---|---|
土壤类型Soil type | ||||
酸性土壤Acid soil | 459 a | 73.4 a | 1.15 a | 0.60 a |
石灰性土壤Calcareous soil | 378 b | 72.2 a | 1.00 a | 0.55 a |
施氮处理N treatment | ||||
A0 | 376 bc | 78.9 a | 1.34 a | 0.58 a |
A50 | 506 a | 86.8 a | 1.27 a | 0.59 a |
A100 | 476 ab | 83.0 a | 1.23 a | 0.58 a |
A200 | 410 abc | 58.8 a | 0.85 a | 0.59 a |
A400 | 327 c | 56.6 a | 0.76 a | 0.53 a |
变异来源Source of variation | ||||
施氮处理N treatment (N) | ** | ns | ns | ns |
土壤类型Soil type (S) | ** | ns | ns | ns |
施氮×土壤类型N×S | ns | ns | ns | ns |
表3
铵态氮供应水平对不同土壤中柑橘抗氧化酶活性的影响"
处理 Treatment | 叶 Leaf | 根 Root | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
丙二醛 MDA (μmol·g-1) | 过氧化 氢酶 CAT (U·g-1·min-1) | 抗坏血酸 过氧化物酶APX (μmol·g-1·min-1) | 超氧化物 歧化酶 SOD (U·g-1) | 过氧化物酶POD (U·g-1·min-1) | 丙二醛 MDA (μmol·g-1) | 过氧化 氢酶 CAT (U·g-1·min-1) | 抗坏血酸 过氧化物酶 APX (μmol·g-1·min-1) | 超氧化物 歧化酶 SOD (U·g-1) | 过氧化物酶POD (U·g-1·min-1) | |
土壤类型 Soil type | ||||||||||
酸性土壤 Acid soil | 13.7 a | 125 a | 3.98 a | 1063 b | 16277 a | 12.2 a | 48.9 b | 1.99 a | 1244 b | 109 a |
石灰性土壤 Calcareous soil | 12.9 a | 118 b | 3.82 a | 1188 a | 15380 a | 10.1 b | 100 a | 2.47 a | 1306 a | 84.5 b |
施氮处理N treatment | ||||||||||
A0 | 9.18 b | 122 a | 3.81 a | 1147 ab | 5046 e | 8.19 b | 68.4 a | 1.73 b | 1021 b | 73.7 b |
A50 | 10.6 b | 119 a | 4.12 a | 1199 a | 8421 d | 10.1 a | 77.7 a | 2.50 a | 1113 b | 92.6 bc |
A100 | 15.0 a | 121 a | 3.77 a | 1127 ab | 29420 a | 11.9 ab | 74.2 a | 2.29 ab | 1477 a | 96.3 b |
A200 | 15.8 a | 121 a | 4.03 a | 1122 ab | 22692 b | 12.9 a | 70.7 a | 2.33 a | 1353 a | 123 a |
A400 | 16.0 a | 125 a | 3.78 a | 1033 b | 13438 c | 12.7 a | 81.4 a | 2.29 ab | 1411 a | 97.5 b |
取样时间 Sample time | ||||||||||
15 d | 13.3 a | 165 a | 4.76 a | 1267 a | 14065 b | 11.1 a | 104 a | 2.10 b | 1384 a | 85 b |
30 d | 13.2 a | 77.7 b | 3.05 b | 984 b | 17592a | 11.2 a | 45.1b | 2.36 a | 1166 b | 109 a |
变异来源Source of variation | ||||||||||
施氮处理 N treatment (N) | *** | ns | ns | *** | *** | *** | ns | ns | *** | *** |
土壤类型 Soil type (S) | ns | *** | ns | *** | ns | *** | *** | ns | *** | ns |
取样时间 Sample time (T) | ns | *** | *** | *** | ** | ns | *** | *** | *** | ** |
施氮×土壤类型N×S | ns | ns | *** | *** | ns | * | ns | *** | *** | ns |
施氮×取样时间N×T | * | ns | ns | ns | ns | ns | ns | ns | ns | ns |
取样时间×土壤类型 T×S | ns | *** | *** | ns | ns | ns | *** | *** | ns | ns |
施氮×取样时间×土壤类型 N×T×S | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
表4
铵态氮供应水平对不同土壤中柑橘叶片氮代谢酶活性的影响"
处理 Treatment | 叶 Leaf | 根 Root | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
谷氨酰胺 合成酶 GS (U·g-1·min-1) | 谷氨酸 合成酶 GOGAT (U·g-1·min-1) | 谷氨酸 脱氢酶 GDH (U·g-1·min-1) | 天冬氨酸 合成酶 AS (U·g-1·min-1) | 硝酸 还原酶 NR (U·g-1·min-1) | 谷氨酰胺 合成酶 GS (U·g-1·min-1) | 谷氨酸 合成酶 GOGAT (U·g-1·min-1) | 谷氨酸 脱氢酶 GDH (U·g-1·min-1) | 天冬氨酸 合成酶 AS (U·g-1·min-1) | 硝酸 还原酶 NR (U·g-1·min-1) | |
土壤类型Soil type | ||||||||||
酸性土壤 Acid soil | 149 b | 204 a | 484 a | 287 b | 8.99 b | 64.3 a | 385 b | 1849 a | 124 a | 17.0 a |
石灰性土壤Calcareous soil | 186 a | 107 b | 279 b | 307 a | 7.99 a | 49.3 b | 645 a | 1002 b | 69.0 b | 8.29 b |
施氮处理N treatment | ||||||||||
A0 | 127 b | 169 a | 448 a | 201 b | 13.8 a | 41.6 b | 645 a | 1858 a | 65.9 c | 15.6 a |
A50 | 164 ab | 157 a | 360 ab | 189 b | 4.93c | 53.2 ab | 577 a | 1526 ab | 69.5 c | 15.4 a |
A100 | 218 a | 186 a | 483 a | 411 a | 8.72 b | 61.4 ab | 601 a | 1520 ab | 85.7 bc | 11.7 ab |
A200 | 170 ab | 152 a | 360 ab | 348 a | 8.29 b | 68.8 a | 550 ab | 1214 bc | 117 ab | 13.9 ab |
A400 | 159 ab | 114 a | 257 b | 335 a | 6.75 bc | 58.8 b | 202 b | 1010 c | 145 a | 6.78 b |
取样时间Sample time | ||||||||||
15 d | 260a | 201 a | 446 a | 312 a | 7.64 b | 76.9 a | 855 a | 1270 b | 113 a | 16.75 a |
30 d | 75b | 110 b | 317 b | 282 b | 9.39 a | 36.6 b | 175 b | 1581 a | 79.8 b | 8.58 b |
变异来源Source of variation | ||||||||||
施氮处理N treatment (N) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
土壤类型 Soil type(S) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
取样时间 Sample time(T) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
施氮×土壤类型N×S | *** | *** | ns | *** | *** | *** | *** | ns | *** | *** |
施氮×取样时间N×T | ** | *** | *** | *** | *** | ** | *** | *** | *** | *** |
取样时间× 土壤类型T×S | ns | *** | *** | ns | *** | ns | *** | *** | ns | *** |
施氮×取样时间×土壤类型 N×T×S | ** | *** | *** | ** | *** | ** | *** | *** | ** | *** |
表5
铵态氮供应水平对不同土壤中柑橘叶片和根中无机氮含量的影响"
处理 Treatment | 叶 Leaf | 根 Root | ||
---|---|---|---|---|
铵态氮NH4+-N (mg·kg-1 FW) | 硝态氮NO3--N (mg·kg-1 FW) | 铵态氮NH4+-N (mg·kg-1 FW) | 硝态氮NO3--N (mg·kg-1 FW) | |
土壤类型Soil type | ||||
酸性土壤Acid soil | 254 a | 101 b | 158 a | 136 b |
石灰性土壤Calcareous soil | 261 a | 132 a | 181 a | 251 a |
施氮处理N treatment | ||||
A0 | 202 c | 114 a | 143 b | 167 a |
A50 | 231 bc | 116 a | 152 b | 189 a |
A100 | 295 a | 86.6 b | 199 a | 187 a |
A200 | 268 ab | 132 a | 200 a | 203 a |
A400 | 292 a | 135 a | 152 b | 221 a |
变异来源Source of variation | ||||
施氮处理N treatment (N) | *** | * | ** | *** |
土壤类型Soil type(S) | ns | ** | *** | ns |
施氮×土壤类型N×S | *** | ns | * | ** |
表6
铵态氮供应水平对不同土壤中柑橘叶片氮含量和累积量的影响"
处理 Treatment | 氮含量 Nitrogen concentration | 氮累积量 Nitrogen accumulation | ||||||
---|---|---|---|---|---|---|---|---|
茎 Stem (g·kg-1) | 叶 Leaf (g·kg-1) | 根 Root (g·kg-1) | 茎 Stem (g/plant) | 叶 Leaf (g/plant) | 根 Root (g/plant) | 总 Total (g/plant) | ||
土壤类型Soil type | ||||||||
酸性土壤Acid soil | 13.8 a | 28.1 b | 20.6 a | 7.94 b | 27.3 b | 20.0 a | 55.2 b | |
石灰性土壤 Calcareous soil | 15.3 a | 33.8 a | 18.3 a | 13.0 a | 34.8 a | 18.1 a | 66.9 a | |
施氮处理N treatment | ||||||||
A0 | 12.4 b | 26.3 c | 15.0 b | 8.25 b | 24.7 b | 15.0 c | 48.0 c | |
A50 | 14.2 b | 30.5 b | 20.9 a | 10.0 ab | 31.1 a | 20.3 ab | 61.4 ab | |
A100 | 14.3 b | 32.8 ab | 20.4 a | 10.5 ab | 37.1 a | 20.8 ab | 68.4 a | |
A200 | 16.0 a | 33.8 a | 22.0 a | 12.4 a | 32.4 a | 21.5 a | 66.3 ab | |
A400 | 16.6 a | 31.2 ab | 19.0 a | 11.5 a | 30.0 ab | 17.9 b | 59.3 b | |
变异来源Source of variation | ||||||||
施氮处理N treatment (N) | *** | ** | *** | *** | *** | ns | *** | |
土壤类型Soil type (S) | * | *** | * | *** | *** | *** | *** | |
施氮×土壤类型N×S | ns | ns | ** | ns | * | * | * |
[1] | 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. |
National Bureau of Statistics of the People's Republic of China. China statistic yearly book. Beijng: China Statistics Press, 2020. (in Chinese) | |
[2] | FAO. Statistics. http://www.fao.org. 2020. |
[3] | 张超博, 邱洁雅, 王敏, 李有芳, 朱攀攀, 王彤, 邓崇岭, 付行政, 凌丽俐, 刘升球, 陈传武, 彭良志. 桂北柑橘园土壤化学性状研究. 土壤, 2020, 52(6): 1187-1195. |
ZHANG C B, QIU J Y, WANG M, LI Y F, ZHU P P, WANG T, DENG C L, FU X Z, LING L L, LIU S Q, CHEN C W, PENG L Z. Study on soil chemical properties of Citrus orchards in northern Guangxi. Soils, 2020, 52(6): 1187-1195. (in Chinese) | |
[4] | 李一凡, 王玉杰, 王彬, 李通. 西南酸雨区重庆缙云山常绿阔叶林土壤氮矿化特征. 林业科学, 2019, 55(6): 1-12. |
LI Y F, WANG Y J, WANG B, LI T. Soil nitrogen mineralization characteristics of evergreen broad-leaved forest in Jinyun Mountain in Chongqing in the acid rain zone, southwest China. Scientia Silvae Sinicae, 2019, 55(6): 1-12. (in Chinese) | |
[5] | 周鑫斌, 温明霞, 王秀英, 樊晓翠, 孙彭寿, 石孝均, 李伟, 戴亨林. 三峡重庆库区柑橘园氮素平衡状况研究. 植物营养与肥料学报, 2011, 17(1): 88-94. |
ZHOU X B, WEN M X, WANG X Y, FAN X C, SUN P S, SHI X J, LI W, DAI H L. Soil nitrogen balance in Citrus orchards of the Three Gorges area in Chongqing. Plant Nutrition and Fertilizer Science, 2011, 17(1): 88-94. (in Chinese) | |
[6] |
DEFOREST J L, OTUYA R K. Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest. Soil Biology and Biochemistry, 2020, 142: 107716.
doi: 10.1016/j.soilbio.2020.107716 |
[7] | 张昊青, 赵学强, 张玲玉, 沈仁芳. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制. 土壤学报, 2021, 58(1): 169-179. |
ZHANG H Q, ZHAO X Q, ZHANG L Y, SHEN R F. Effects of liming and dicyandiamide (DCD) application on soil pH and nitrification of acidic red soil. Acta Pedologica Sinica, 2021, 58(1): 169-179. (in Chinese) | |
[8] |
WANG J, TU X S, ZHANG H M, CUI J Y, NI K, CHEN J L, CHENG Y, ZHANG J B, CHANG S X. Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil. Science of the Total Environment, 2020, 747: 141340.
doi: 10.1016/j.scitotenv.2020.141340 |
[9] | 樊卫国, 葛会敏. 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响. 中国农业科学, 2015, 48(13): 2666-2675. |
FAN W G, GE H M. Effects of nitrogen fertilizer of different forms and ratios on the growth, nitrogen absorption and utilization of young navel orange trees grafted on Poncirus trifoliata. Scientia Agricultura Sinica, 2015, 48(13): 2666-2675. (in Chinese) | |
[10] | 梁珊珊. 我国柑橘主产区氮磷钾肥施用现状及减施潜力研究[D]. 武汉: 华中农业大学, 2017. |
LIANG S S. Studies on NPK fertilization status and the potential of reducing application rate in major Citrus planting regions of China[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) | |
[11] | 雷靖, 梁珊珊, 谭启玲, 胡承孝, 孙学成, 赵小虎. 我国柑橘氮磷钾肥用量及减施潜力. 植物营养与肥料学报, 2019, 25(9): 1504-1513. |
LEI J, LIANG S S, TAN Q L, HU C X, SUN X C, ZHAO X H. NPK fertilization rates and reducing potential in the main Citrus producing regions of China. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1504-1513. (in Chinese) | |
[12] | 李文涛. 纽荷尔脐橙氮磷钾养分推荐技术初步研究[D]. 重庆: 西南大学, 2018. |
LI W T. Preliminary studies on recommended fertilization for nitrogen, phosphorus, potassium of newhall navel orange[D]. Chongqing: Southwest University, 2018. (in Chinese) | |
[13] | 王秀英. 重庆地区柑橘园土壤养分现状及优化施肥研究[D]. 重庆: 西南大学, 2011. |
WANG X Y. Study on soil nutrient status of Citrus orchards and optimization fertilization in Chongqing area[D]. Chongqing: Southwest University, 2011. (in Chinese) | |
[14] |
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
doi: 10.1126/science.1182570 |
[15] |
YANG M, LONG Q, LI W L, WANG Z C, HE X H, WANG J, WANG X Z, XIONG H Y, GUO C Y, ZHANG G C, LUO B, QIU J, CHEN X P, ZHANG F S, SHI X J, ZHANG Y Q. Mapping the environmental cost of a typical Citrus-producing County in China: hotspot and optimization. Sustainability, 2020, 12(5): 1827.
doi: 10.3390/su12051827 |
[16] |
BRITTO D T, KRONZUCKER H J. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 2002, 159(6): 567-584.
doi: 10.1078/0176-1617-0774 |
[17] |
BALIGAR V C, FAGERIA N K. Influence of nitrogen forms and levels on the growth and nutrition of cacao. Journal of Plant Nutrition, 2017, 40(5): 709-718.
doi: 10.1080/01904167.2016.1262401 |
[18] |
WENG L Y, ZHANG M X, WANG K, CHEN G L, DING M, YUAN W, ZHU Y Y, XU W F, XU F Y. Potassium alleviates ammonium toxicity in rice by reducing its uptake through activation of plasma membrane H+-ATPase to enhance proton extrusion. Plant Physiology and Biochemistry, 2020, 151: 429-437.
doi: 10.1016/j.plaphy.2020.03.040 |
[19] |
TAMIR G, AFIK G, ZILKAH S, DAI N, BAR-TAL A. The use of increasing proportions of N-NH4+ among the total applied inorganic N to improve acidification and the nutritional status and performance of blueberry plants in soilless culture. Scientia Horticulturae, 2021, 276: 109754.
doi: 10.1016/j.scienta.2020.109754 |
[20] | 汤丹丹, 刘美雅, 范凯, 阮建云. 茶树氮素吸收利用机制研究进展. 园艺学报, 2017, 44(9): 1759-1771. |
TANG D D, LIU M Y, FAN K, RUAN J Y. Research progress of nitrogen utilization and assimilation in tea plant. Acta Horticulturae Sinica, 2017, 44(9): 1759-1771. (in Chinese) | |
[21] | 唐伟杰, 官春云, 林良斌, 李丽萍, 张振华, 王峰, 肖钢, 李博, 刘屹湘. 不同硝铵比对油菜生长、生理与产量的影响. 植物营养与肥料学报, 2018, 24(5): 1338-1348. |
TANG W J, GUAN C Y, LIN L B, LI L P, ZHANG Z H, WANG F, XIAO G, LI B, LIU Y X. Effects of nitrate and ammonium supply ratios on growth, physiology and yield of oilseed rape(Brassica napus L.). Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1338-1348. (in Chinese) | |
[22] |
KE J, PU W X, WANG H, LIU L H, SHENG S. Phenotypical evidence of effective amelioration of ammonium-inhibited plant (root) growth by exogenous low urea. Journal of Plant Physiology, 2020, 255: 153306.
doi: 10.1016/j.jplph.2020.153306 |
[23] | 张梦, 梁永江, 张长华, 陈小明, 杨宇虹, 袁玲. 不同氮源对烤烟漂浮育苗氮素利用及烟苗生长的影响. 植物营养与肥料学报, 2012, 18(1): 139-145. |
ZHANG M, LIANG Y J, ZHANG C H, CHEN X M, YANG Y H, YUAN L. Effects of nitrogen sources on nitrogen utilization and growth of flue-cured tobacco in the floating-seeding system. Plant Nutrition and Fertilizer Science, 2012, 18(1): 139-145. (in Chinese) | |
[24] |
ZHOU Q Y, GAO J Q, ZHANG R M, ZHANG R Q. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Ecotoxicology and Environmental Safety, 2017, 143: 102-110.
doi: 10.1016/j.ecoenv.2017.04.016 |
[25] |
PODGÓRSKA A, BURIAN M, RYCHTER A M, RASMUSSON A G, SZAL B. Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves. Physiologia Plantarum, 2017, 160(1): 65-83.
doi: 10.1111/ppl.12538 |
[26] | 高青海, 王亚坤, 陆晓民, 贾双双. 硅对铵态氮胁迫下黄瓜幼苗生理特性的影响. 应用生态学报, 2014, 25(5): 1395-1400. |
GAO Q H, WANG Y K, LU X M, JIA S S. Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress. Chinese Journal of Applied Ecology, 2014, 25(5): 1395-1400. (in Chinese) | |
[27] | 孙朝晖, 程斐, 赵玉国, 李式军. 铵态氮促进水培番茄膜质过氧化产物形成. 园艺学报, 2002, 29(1): 4. |
SUN Z H, CHENG F, ZHAO Y G, LI S J. NH4+-N accelerated lipid peroxidation materials in tomato leaves in nutrient solution cultivation. Acta Horticulturae Sinica, 2002, 29(1): 4. (in Chinese) | |
[28] | 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54(11): 2287-2301. |
WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: a review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. (in Chinese) | |
[29] |
徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展. 植物学报, 2016, 51(2): 152-166.
doi: 10.11983/CBB15077 |
XU X P, FU X D, LIAO H. Advances in study of ammonium assimilation and its regulatory mechanism in plants. Chinese Bulletin of Botany, 2016, 51(2): 152-166. (in Chinese)
doi: 10.11983/CBB15077 |
|
[30] |
DAI J L, ZHU Y G, HUANG Y Z, ZHANG M, SONG J L. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant and Soil, 2006, 289(1): 301-308.
doi: 10.1007/s11104-006-9139-7 |
[31] | 刘学彤, 杨军芳, 黄少辉, 贾良良, 邢素丽, 杨云马, 王欣雅, 刘子轩. 尿素硝铵溶液对冬小麦产量及土壤无机氮含量的影响. 中国土壤与肥料, 2019(4): 116-120, 126. |
LIU X T, YANG J F, HUANG S H, JIA L L, XING S L, YANG Y M, WANG X Y, LIU Z X. Effects of urea ammonium nitrogen on the yield of winter wheat and the concentration of soil mineral nitrogen. Soil and Fertilizer Sciences in China, 2019(4): 116-120, 126. (in Chinese) | |
[32] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[33] | 王学奎. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2006. |
WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment. 2nd ed. Beijing: Higher Education Press, 2006. (in Chinese) | |
[34] | 白鹏, 冉春艳, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014, 47(18): 3566-3576. |
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2014, 47(18): 3566-3576. (in Chinese) | |
[35] | 鲍俊丹, 石美, 张妹婷, 梁东丽, 吴雄平. 中国典型土壤硝化作用与土壤性质的关系. 中国农业科学, 2011, 44(7): 1390-1398. |
BAO J D, SHI M, ZHANG M T, LIANG D L, WU X P. Nitrification of main soils in China and its relationship with soil properties. Scientia Agricultura Sinica, 2011, 44(7): 1390-1398. (in Chinese) | |
[36] |
STEVENS R J, LAUGHLIN R J, MALONE J P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry, 1998, 30(8/9): 1119-1126.
doi: 10.1016/S0038-0717(97)00227-7 |
[37] | 张苗苗, 王伯仁, 李冬初, 贺纪正, 张丽梅. 长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响. 生态学报, 2015, 35(19): 6362-6370. |
ZHANG M M, WANG B R, LI D C, HE J Z, ZHANG L M. Effects of long-term N fertilizer application and liming on nitrification and ammonia oxidizers in acidic soils. Acta Ecologica Sinica, 2015, 35(19): 6362-6370. (in Chinese) | |
[38] | 张昊青, 赵学强, 张玲玉, 沈仁芳. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制. 土壤学报, 2021, 58(1): 169-179. |
ZHANG H Q, ZHAO X Q, ZHANG L Y, SHEN R F. Effects of liming and dicyandiamide (DCD) application on soil pH and nitrification of acidic red soil. Acta Pedologica Sinica, 2021, 58(1): 169-179. (in Chinese) | |
[39] | 沈兆敏, 刘焕东. 柑橘营养与施肥. 北京: 中国农业出版社, 2013. |
SHEN Z M, LIU H D. Citrus Nutrition and Fertilization. Beijing: Chinese Agriculture Press, 2013. (in Chinese) | |
[40] | 张彦东, 白尚斌. 氮素形态对树木养分吸收和生长的影响. 应用生态学报, 2003, 14(11): 204-2048. |
ZHANG Y D, BAI S B. Effects of nitrogen forms on nutrient uptake and growth of trees. Chinese Journal of Applied Ecology, 2003, 14(11): 204-2048. (in Chinese) | |
[41] |
CHEN H H, JIA Y M, XU H, WANG Y W, ZHOU Y, HUANG Z R, YANG L T, LI Y, CHEN L S, GUO J X. Ammonium nutrition inhibits plant growth and nitrogen uptake in Citrus seedlings. Scientia Horticulturae, 2020, 272: 109526.
doi: 10.1016/j.scienta.2020.109526 |
[42] | 刘扬, 孙淑珍, 雷康琦, 田中伟, 戴廷波. 外源硝态氮对高铵胁迫下小麦幼苗生长的影响. 麦类作物学报, 2019, 39(12): 1477-1485. |
LIU Y, SUN S Z, LEI K Q, TIAN Z W, DAI T B. Effect of exogenous substances on seed germination and seedling growth under elevated ammonium stress in wheat. Journal of Triticeae Crops, 2019, 39(12): 1477-1485. (in Chinese) | |
[43] | 李庆余, 徐新娟, 顾海龙, 高虹艳, 朱毅勇, 董彩霞, 沈其荣. 氮素形态对樱桃番茄果实发育中氮代谢的影响. 应用生态学报, 2010, 21(9): 2335-2341. |
LI Q Y, XU X J, GU H L, GAO H Y, ZHU Y Y, DONG C X, SHEN Q R. Effects of applying different nitrogen form on cherry tomato nitrogen metabolism during fruit development. Chinese Journal of Applied Ecology, 2010, 21(9): 2335-2341. (in Chinese) | |
[44] | 黄秀, 叶昌, 燕金香, 李福明, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析. 中国农业科学, 2021, 54(7): 1455-1468. |
HUANG X, YE C, YAN J X, LI F M, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Analysis of ammonium uptake and growth differences of rice varieties with different nitrogen recovery efficiency at seedling stage. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468. (in Chinese) |
[1] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[2] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[3] | 李菲菲, 廉雪菲, 尹韬, 常媛媛, 金燕, 马小川, 陈岳文, 叶丽, 李云松, 卢晓鹏. 柑橘果实囊衣发育与化渣性的形成[J]. 中国农业科学, 2023, 56(2): 333-344. |
[4] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[5] | 赵海璇,张亦涛,李文超,马文奇,翟丽梅,居学海,陈涵婷,康锐,孙志梅,习斌,刘宏斌. 白洋淀流域核心区农牧系统未利用氮量及空间分布[J]. 中国农业科学, 2023, 56(1): 118-128. |
[6] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[7] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[8] | 侯将将,王金洲,孙平,朱文琰,徐靖,卢昌艾. 中国草地地上生产力氮素敏感性的时空变化[J]. 中国农业科学, 2022, 55(9): 1811-1821. |
[9] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[10] | 吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 高佳蕊,方胜志,张玉玲,安晶,虞娜,邹洪涛. 东北黑土不同开垦年限稻田土壤有机氮矿化特征[J]. 中国农业科学, 2022, 55(8): 1579-1588. |
[14] | 王淼,张宇,李瑞强,辛晓平,朱晓昱,曹娟,周忠义,闫瑞瑞. 放牧强度对羊草草甸草原植物器官及群落氮磷化学计量的影响[J]. 中国农业科学, 2022, 55(7): 1371-1384. |
[15] | 余琦隆,韩莹琰,郝敬虹,秦晓晓,刘超杰,范双喜. 外源亚精胺对高温胁迫下生菜氮代谢的影响[J]. 中国农业科学, 2022, 55(7): 1399-1410. |
|