中国农业科学 ›› 2022, Vol. 55 ›› Issue (17): 3450-3460.doi: 10.3864/j.issn.0578-1752.2022.17.015
王雪洁(),邢爽(),赵少猛,周莹,厉秀梅,柳清秀,马丹丹,张敏红,冯京海()
收稿日期:
2021-07-25
接受日期:
2022-07-13
出版日期:
2022-09-01
发布日期:
2022-09-07
通讯作者:
冯京海
作者简介:
王雪洁,E-mail: 基金资助:
WANG XueJie(),XING Shuang(),ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai()
Received:
2021-07-25
Accepted:
2022-07-13
Online:
2022-09-01
Published:
2022-09-07
Contact:
JingHai FENG
摘要:
【目的】 探究热应激如何影响肉鸡的肠道微生物组成和结构,为研究缓解热应激的不利影响提供依据。【方法】 将144羽体重接近(1 771±40)g的35日龄AA雄性肉鸡随机分为3个处理组。3个处理组分别为适温对照组(TC)、高温组(HT)和适温采食配对组(PF)。TC组舱内温度维持(21±1)℃,肉鸡自由采食;HT组舱内温度维持(31±1)℃,自由采食;PF组舱内温度维持(21±1)℃,根据HT肉鸡的采食量饲喂。温度及限饲处理共持续7 d。【结果】 研究发现,与TC组相比,HT组肉鸡的采食量和日增重显著降低(P<0.01),料重比显著提高(P<0.01),PF组肉鸡采食量和日增重显著降低(P<0.01)。HT组的采食量与PF组相似,但日增重显著低于PF组(P<0.05),料重比高于PF组(P<0.05)。表明即使采食量相同,高温仍显著降低肉鸡体增重,这与高温降低饲料转化效率有关。与TC组相比,HT组肉鸡的体核温度(P=0.079)和血清皮质酮水平(P=0.071)有升高趋势,PF组肉鸡体核温度和血清皮质酮水平与TC组相似(P>0.05)。与TC组相比,HT组和PF组肉鸡回肠前段菌群sobs、Chao1和Shannon指数均显著升高(P<0.05),而HT组和PF组的α多样性指数无显著性差异。主坐标分析(PCoA)显示,HT组和PF组基本聚集在一起,与TC组有明显的分离。相似性分析也证实了这一趋势。相关分析发现,肉鸡的采食量和PCoA的主坐标1之间存在显著相关(R = 0.786, P<0.001),而肉鸡体核温度或血清皮质酮和主坐标1之间无显著相关(P>0.05)。LEfSe分析发现(Score ≥3),HT组和TC组之间存在18个特异属。PF组肉鸡回肠中这18个属的相对丰度与HT组接近,与TC组同样存在显著差异。另外,回肠前段优势菌属中(TOP50),采食量与其中30个属的相对丰度显著相关,而体核温度和血清皮质酮仅与其中个别属的相对丰度相关。【结论】 HT组与PF组肉鸡的体核温度和血清皮质酮存在明显差异,但采食量相同,结果回肠菌群的结构和组成相似;TC组与PF组肉鸡的体核温度和血清皮质酮相似,仅采食量显著不同,结果回肠菌群的结构和组成明显不同。表明持续热应激对肉鸡回肠前段菌群的影响主要与采食量降低有关,与体温或血清皮质酮升高无显著关系。相关分析的结果也证明了这一结论。
王雪洁,邢爽,赵少猛,周莹,厉秀梅,柳清秀,马丹丹,张敏红,冯京海. 热应激对肉鸡回肠菌群的影响因素研究[J]. 中国农业科学, 2022, 55(17): 3450-3460.
WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers[J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
表1
基础日粮的组成和营养含量"
原料组成Ingredients | 含量 Content (%) | 营养水平Nutrient levels 2) | |
---|---|---|---|
玉米Corn | 56.51 | 代谢能ME (MJ/kg) | 12.73 |
豆粕Soybean meal | 35.52 | 粗蛋白CP(%) | 20.07 |
石粉Limestone | 1.00 | 钙Ca(%) | 0.90 |
磷酸氢钙CaHPO4 | 1.78 | 有效磷AP(%) | 0.40 |
豆油Soybean oil | 4.50 | 赖氨酸Lys(%) | 1.00 |
蛋氨酸DL-Met | 0.11 | 蛋氨酸Met(%) | 0.42 |
食盐NaCl | 0.30 | 蛋+胱氨酸Met+Cys | 0.78 |
预混料Premix 1) | 0.28 | ||
合计Total | 100.00 |
图5
热应激对肉鸡回肠微生物组成的影响 A:采用LEfSe鉴定出的HT和TC组之间的特异菌属 The specific differential genera between the HT and TC group determined by linear discriminative analysis effect size (LEfSe). B:特异菌属相对丰度的比较 Comparison of the relative abundance of the specific differential genera. C:采食量、体核温度或血清皮质酮与前50个属相对丰度之间的相关性分析 Spearman's coefficient analysis between the core temperature, serum corticosterone, or feed intake with the top 50 most abundant genera in the ileal microbiota of the broilers. TC:适温对照组Thermoneutral control group;HT:高温组 High ambient temperature group;PF:适温采食配对组Pair-feeding group "
[1] |
LARA L J, ROSTAGNO M H. Impact of heat stress on poultry production. Animals: An Open Access Journal from MDPI, 2013, 3(2): 356-369. doi: 10.3390/ani3020356.
doi: 10.3390/ani3020356 |
[2] |
SUGIHARTO S, YUDIARTI T, ISROLI I, WIDIASTUTI E, KUSUMANTI E. Dietary supplementation of probiotics in poultry exposed to heat stress-A review. Annals of Animal Science, 2017, 17(3): 591-604. doi: 10.1515/aoas-2016-0062.
doi: 10.1515/aoas-2016-0062 |
[3] |
NAWAB A, IBTISHAM F, LI G H, KIESER B, WU J, LIU W C, ZHAO Y, NAWAB Y, LI K Q, XIAO M, AN L L. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 2018, 78: 131-139. doi: 10.1016/j.jtherbio.2018.08.010.
doi: 10.1016/j.jtherbio.2018.08.010 |
[4] |
FARAG M R, ALAGAWANY M. Physiological alterations of poultry to the high environmental temperature. Journal of Thermal Biology, 2018, 76: 101-106. doi: 10.1016/j.jtherbio.2018.07.012.
doi: 10.1016/j.jtherbio.2018.07.012 |
[5] |
WAITE D W, TAYLOR M W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 2014, 5: 223. doi: 10.3389/fmicb.2014.00223.
doi: 10.3389/fmicb.2014.00223 |
[6] |
WAITE D W, TAYLOR M W. Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 2015, 6: 673. doi: 10.3389/fmicb.2015.00673.
doi: 10.3389/fmicb.2015.00673 |
[7] |
BARKO P C, MCMICHAEL M A, SWANSON K S, WILLIAMS D A. The gastrointestinal microbiome: A review. Journal of Veterinary Internal Medicine, 2018, 32(1): 9-25. doi: 10.1111/jvim.14875.
doi: 10.1111/jvim.14875 |
[8] |
STOKES C R. The development and role of microbial-host interactions in gut mucosal immune development. Journal of Animal Science and Biotechnology, 2017, 8: 12. doi: 10.1186/s40104-016-0138-0.
doi: 10.1186/s40104-016-0138-0 |
[9] |
YADAV S, JHA R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 2019, 10: 2. doi: 10.1186/s40104-018-0310-9.
doi: 10.1186/s40104-018-0310-9 |
[10] |
SUZUKI K, HARASAWA R, YOSHITAKE Y, MITSUOKA T. Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science, 1983, 45(3): 331-338. doi: 10.1292/jvms1939.45.331.
doi: 10.1292/jvms1939.45.331 |
[11] |
SONG J, XIAO K, KE Y L, JIAO L F, HU C H, DIAO Q Y, SHI B, ZOU X T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 2014, 93(3): 581-588. doi: 10.3382/ps.2013-03455.
doi: 10.3382/ps.2013-03455 |
[12] |
BURKHOLDER K M, THOMPSON K L, EINSTEIN M E, APPLEGATE T J, PATTERSON J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poultry Science, 2008, 87(9): 1734-1741. doi: 10.3382/ps.2008-00107.
doi: 10.3382/ps.2008-00107 |
[13] | 彭骞骞, 王雪敏, 张敏红, 冯京海, 甄龙, 张少帅. 持续偏热环境对肉鸡盲肠菌群多样性的影响. 中国农业科学, 2016, 49(1): 186-194. |
PENG Q Q, WANG X M, ZHANG M H, FENG J H, ZHEN L, ZHANG S S. Effects of constant moderate temperatures on the diversity of the intestinal microbial flora of broilers. Scientia Agricultura Sinica, 2016, 49(1): 186-194. (in Chinese) | |
[14] |
常双双, 李萌, 厉秀梅, 石玉祥, 张敏红, 冯京海. 日循环变化偏热环境对肉鸡血清脑肠肽和盲肠菌群多样性的影响. 中国农业科学, 2018, 51(22): 4364-4372. doi: 10.3864/j.issn.0578-1752.2018.22.014.
doi: 10.3864/j.issn.0578-1752.2018.22.014 |
CHANG S S, LI M, LI X M, SHI Y X, ZHANG M H, FENG J H. Effects of the daily cycle variation of the moderate ambient temperatures on the serum brain gut peptide and the diversity of caecal microflora in broilers. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372. doi: 10.3864/j.issn.0578-1752.2018.22.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.22.014 |
|
[15] |
WANG X J, FENG J H, ZHANG M H, LI X M, MA D D, CHANG S S. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poultry Science, 2018, 97(6): 2153-2158. doi: 10.3382/ps/pey032.
doi: 10.3382/ps/pey032 |
[16] |
SHI D Y, BAI L, QU Q, ZHOU S S, YANG M M, GUO S N, LI Q H, LIU C. Impact of gut microbiota structure in heat-stressed broilers. Poultry Science, 2019, 98(6): 2405-2413. doi: 10.3382/ps/pez026.
doi: 10.3382/ps/pez026 |
[17] |
LIU G H, ZHU H B, MA T H, YAN Z Y, ZHANG Y Y, GENG Y Y, ZHU Y, SHI Y X. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. Journal of Thermal Biology, 2020, 91: 102619. doi: 10.1016/j.jtherbio.2020.102619.
doi: 10.1016/j.jtherbio.2020.102619 |
[18] |
WANG G J, LI X M, ZHOU Y, FENG J H, ZHANG M H. Effects of heat stress on gut-microbial metabolites, gastrointestinal peptides, glycolipid metabolism, and performance of broilers. Animals: An Open Access Journal from MDPI, 2021, 11(5): 1286. doi: 10.3390/ani11051286.
doi: 10.3390/ani11051286 |
[19] |
ROSTAGNO M H. Effects of heat stress on the gut health of poultry. Journal of Animal Science, 2020, 98(4): skaa090. doi: 10.1093/jas/skaa090.
doi: 10.1093/jas/skaa090 |
[20] |
HE J, HE Y X, PAN D D, CAO J X, SUN Y Y, ZENG X Q. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Frontiers in Microbiology, 2019, 10: 903. doi: 10.3389/fmicb.2019.00903.
doi: 10.3389/fmicb.2019.00903 |
[21] |
SOHAIL M U, HUME M E, BYRD J A, NISBET D J, IJAZ A, SOHAIL A, SHABBIR M Z, REHMAN H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 2012, 91(9): 2235-2240. doi: 10.3382/ps.2012-02182.
doi: 10.3382/ps.2012-02182 |
[22] |
SEIFI K, REZAEI M, YANSARI A T, RIAZI G H, ZAMIRI M J, HEIDARI R. Saturated fatty acids may ameliorate environmental heat stress in broiler birds by affecting mitochondrial energetics and related genes. Journal of Thermal Biology, 2018, 78: 1-9. doi: 10.1016/j.jtherbio.2018.08.018.
doi: 10.1016/j.jtherbio.2018.08.018 |
[23] |
CHENG Y F, CHEN Y P, CHEN R, SU Y, ZHANG R Q, HE Q F, WANG K, WEN C, ZHOU Y M. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poultry Science, 2019, 98(10): 4767-4776. doi: 10.3382/ps/pez192.
doi: 10.3382/ps/pez192 |
[24] |
CHANG Y, WANG X J, FENG J H, ZHANG M H, DIAO H J, ZHANG S S, PENG Q Q, ZHOU Y, LI M, LI X. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels. Poultry Science, 2018, 97(9): 3119-3125. doi: 10.3382/ps/pey184.
doi: 10.3382/ps/pey184 |
[25] |
DALE N M, FULLER H L. Effect of diet composition on feed intake and growth of chicks under heat stress: II. constant vs. cycling temperatures. Poultry Science, 1980, 59(7): 1434-1441. doi: 10.3382/ps.0591434.
doi: 10.3382/ps.0591434 |
[26] |
ALHENAKY A, ABDELQADER A, ABUAJAMIEH M, AL- FATAFTAH A R. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 2017, 70: 9-14. doi: 10.1016/j.jtherbio.2017.10.015.
doi: 10.1016/j.jtherbio.2017.10.015 |
[27] |
SONG Z H, CHENG K, ZHANG L L, WANG T. Dietary supplementation of enzymatically treated Artemisia annua could alleviate the intestinal inflammatory response in heat-stressed broilers. Journal of Thermal Biology, 2017, 69: 184-190. doi: 10.1016/j.jtherbio.2017.07.015.
doi: 10.1016/j.jtherbio.2017.07.015 |
[28] |
UERLINGS J, SONG Z G, HU X Y, WANG S K, LIN H, BUYSE J, EVERAERT N. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poultry Science, 2018, 97(10): 3681-3690. doi: 10.3382/ps/pey229.
doi: 10.3382/ps/pey229 |
[29] |
CHOI J H, KIM G B, CHA C J. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poultry Science, 2014, 93(8): 1942-1950. doi: 10.3382/ps.2014-03974.
doi: 10.3382/ps.2014-03974 |
[30] |
XIAO Y P, XIANG Y, ZHOU W D, CHEN J G, LI K F, YANG H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5): 1387-1393. doi: 10.3382/ps/pew372.
doi: 10.3382/ps/pew372 |
[31] |
HEENEY D D, GAREAU M G, MARCO M L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Current Opinion in Biotechnology, 2018, 49: 140-147. doi: 10.1016/j.copbio.2017.08.004.
doi: 10.1016/j.copbio.2017.08.004 |
[32] |
WANG T W, TENG K L, LIU Y Y, SHI W X, ZHANG J, DONG E Q, ZHANG X, TAO Y, ZHONG J. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Frontiers in Microbiology, 2019, 10: 90. doi: 10.3389/fmicb.2019.00090.
doi: 10.3389/fmicb.2019.00090 |
[33] |
ZHANG W, WU Q, ZHU Y H, YANG G Y, YU J, WANG J F, JI H F. Probiotic Lactobacillus rhamnosus GG induces alterations in ileal microbiota with associated CD3 - CD19 - T-bet + IFNγ +/- cell subset homeostasis in pigs challenged with Salmonella enterica serovar 4, [5], 12: i:. Frontiers in Microbiology, 2019, 10: 977. doi: 10.3389/fmicb.2019.00977.
doi: 10.3389/fmicb.2019.00977 |
[34] |
SONOYAMA K, FUJIWARA R, TAKEMURA N, OGASAWARA T, WATANABE J, ITO H, MORITA T. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Applied and Environmental Microbiology, 2009, 75(20): 6451-6456. doi: 10.1128/AEM.00692-09.
doi: 10.1128/AEM.00692-09 |
[35] |
COSTELLO E K, GORDON J I, SECOR S M, KNIGHT R. Postprandial remodeling of the gut microbiota in Burmese pythons. The ISME Journal, 2010, 4(11): 1375-1385. doi: 10.1038/ismej.2010.71.
doi: 10.1038/ismej.2010.71 |
[36] |
SANDHU K V, SHERWIN E, SCHELLEKENS H, STANTON C, DINAN T G, CRYAN J F. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179: 223-244. doi: 10.1016/j.trsl.2016.10.002.
doi: 10.1016/j.trsl.2016.10.002 |
[37] |
GUEVARRA R B, LEE J H, LEE S H, SEOK M J, KIM D W, KANG B N, JOHNSON T J, ISAACSON R E, KIM H B. Piglet gut microbial shifts early in life: Causes and effects. Journal of Animal Science and Biotechnology, 2019, 10: 1. doi: 10.1186/s40104-018-0308-3.
doi: 10.1186/s40104-018-0308-3 |
[38] |
OSMAN A M, TANIOS N I. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comparative Biochemistry and Physiology Part A: Physiology, 1983, 75(4): 563-567. doi: 10.1016/0300-9629(83)90421-8.
doi: 10.1016/0300-9629(83)90421-8 |
[39] |
ROUTMAN K S, YOSHIDA L, FRIZZAS DE LIMA A C, MACARI M, PIZAURO J M Jr. Intestinal and pancreas enzyme activity of broilers exposed to thermal stress. Revista Brasileira De Ciência Avícola, 2003, 5(1): 23-27. doi: 10.1590/s1516-635x2003000100003.
doi: 10.1590/s1516-635x2003000100003 |
[40] |
PETROSUS E, SILVA E B, LAY D, EICHER S D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage1. Journal of Animal Science, 2018, 96(11): 4543-4551. doi: 10.1093/jas/sky312.
doi: 10.1093/jas/sky312 |
[41] |
AATSINKI A K, KESKITALO A, LAITINEN V, MUNUKKA E, UUSITUPA H M, LAHTI L, KORTESLUOMA S, MUSTONEN P, RODRIGUES A J, COIMBRA B, HUOVINEN P, KARLSSON H, KARLSSON L. Maternal prenatal psychological distress and hair cortisol levels associate with infant fecal microbiota composition at 2.5 months of age. Psychoneuroendocrinology, 2020, 119: 104754. doi: 10.1016/j.psyneuen.2020.104754.
doi: 10.1016/j.psyneuen.2020.104754 |
[42] |
AMINI-KHOEI H, HAGHANI-SAMANI E, BEIGI M, SOLTANI A, MOBINI G R, BALALI-DEHKORDI S, HAJ-MIRZAIAN A, RAFIEIAN-KOPAEI M, ALIZADEH A, HOJJATI M R, VALIDI M. On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress. International Immunopharmacology, 2019, 66: 242-250. doi: 10.1016/j.intimp.2018.11.037.
doi: 10.1016/j.intimp.2018.11.037 |
[1] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[2] | 丁鹏,仝月月,刘会超,尹鑫,刘将军,贺喜,宋泽和,张海涵. 黄羽肉鸡胚期卵黄微生物动态变化及对早期肠道微生物定殖的影响[J]. 中国农业科学, 2022, 55(14): 2837-2849. |
[3] | 陈志敏,常文环,郑爱娟,蔡辉益,刘国华. 饲粮中添加膨化羽毛粉对肉鸡生长性能、屠宰性能和血清生化指标的影响[J]. 中国农业科学, 2022, 55(13): 2643-2653. |
[4] | 束婧婷,姬改革,单艳菊,章明,巨晓军,刘一帆,屠云洁,盛中伟,唐燕飞,蒋华莲,邹剑敏. IGF1-PI3K-Akt信号通路相关基因在黄羽肉鸡肌肉和肝脏中的表达[J]. 中国农业科学, 2021, 54(9): 2027-2038. |
[5] | 杨语嫣,李耀文,邢爽,张敏红,冯京海. 基于体表温度的肉鸡温湿指数模型研究[J]. 中国农业科学, 2021, 54(6): 1270-1279. |
[6] | 王一冰,陈芳,苟钟勇,李龙,林厦菁,张盛,蒋守群. 快大型黄羽肉种鸡VD3需要量研究[J]. 中国农业科学, 2021, 54(16): 3549-3560. |
[7] | 李桢,杨世雄,牛胜,张宁,李欣,张阳阳,贾云飞,田志雄,宁官保,张鼎,田文霞. 重组GSTA3蛋白对福美双诱导的肉鸡TD中抗凋亡基因BAG-3表达的影响[J]. 中国农业科学, 2020, 53(9): 1921-1930. |
[8] | 孙永波,王亚,萨仁娜,张宏福. GC-MS分析慢性氨气应激对肉鸡血清代谢物的影响[J]. 中国农业科学, 2020, 53(8): 1688-1698. |
[9] | 张德印,张小雪,李发弟,李冲,李国泽,张煜坤,李晓龙,宋其志,赵源,刘晓青,马亮强,王维民. 不同饲料效率与绵羊瘤胃组织形态学关系[J]. 中国农业科学, 2020, 53(24): 5115-5124. |
[10] | 袁雄坤,姜丽丽,陶诗煜,臧建军,王军军. 母猪热应激敏感指标体系的研究进展[J]. 中国农业科学, 2020, 53(22): 4691-4699. |
[11] | 邢爽,冯京海. 乳酸杆菌对肉鸡生长性能影响的Meta分析[J]. 中国农业科学, 2020, 53(1): 183-190. |
[12] | 杨语嫣,王雪洁,张敏红,冯京海. 升温环境下肉鸡体温和呼吸频率对热中性区上限温度估测[J]. 中国农业科学, 2019, 52(3): 550-557. |
[13] | 张巍,戴晋军,杨雪海,魏金涛,陈明新,胡骏鹏,黄少文. 肉鸡酵母水解物代谢能及氨基酸可利用率评定[J]. 中国农业科学, 2019, 52(20): 3685-3694. |
[14] | 周敏,周雪梅,杨立杰,黄丽波,冯蕾,邵明慧,杨晨,杨维仁,杨在宾,姜淑贞 . 玉米赤霉烯酮对断奶小母猪子宫形态学及热应激蛋白70分布和表达的影响[J]. 中国农业科学, 2018, 51(4): 778-788. |
[15] | 孙永波,王亚,萨仁娜,张宏福. 不同湿度对肉鸡生长性能、抗氧化能力和免疫功能的影响[J]. 中国农业科学, 2018, 51(24): 4720-4728. |
|