中国农业科学 ›› 2019, Vol. 52 ›› Issue (20): 3685-3694.doi: 10.3864/j.issn.0578-1752.2019.20.018

• 畜牧·兽医·资源昆虫 • 上一篇    下一篇

肉鸡酵母水解物代谢能及氨基酸可利用率评定

张巍1,戴晋军2,3,杨雪海1,魏金涛1,陈明新1,胡骏鹏2,3(),黄少文1   

  1. 1 湖北省农业科学院畜牧兽医研究所/农业农村部畜禽细菌病防治剂创制重点实验室/动物胚胎工程及分子育种湖北省重点实验室,武汉 430064
    2 安琪酵母股份有限公司,湖北宜昌 443000
    3 安琪酵母(崇左)有限公司,广西崇左 532200
  • 收稿日期:2019-03-01 接受日期:2019-04-28 出版日期:2019-10-16 发布日期:2019-10-28
  • 通讯作者: 胡骏鹏
  • 作者简介:张巍,Tel:13476087646;E-mail:ww13220@163.com。|戴晋军,E-mail:daijj@angelyeast.com。
  • 基金资助:
    国家现代农业产业技术体系(CARS-41-Z14);湖北省农业科学院创新基金(2016-620-000-001-028);2017年广西壮族自治区科技计划(2017AB56026)

Evaluation of Apparent Metabolic Energy, Nitrogen Corrected Metabolic Energy, Biological Value of Protein and Ileal Digestibility of Amino Acid of Yeast Hydrolysate for Broilers

Wei ZHANG1,JinJun DAI2,3,XueHai YANG1,JinTao WEI1,MingXin CHEN1,JunPeng HU2,3(),ShaoWen HUANG1   

  1. 1 Animal Husbandry and Veterinary Research Institute, Hubei Academy of Agricultural Sciences/Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture)/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064
    2 Angel Yeast Co., Ltd, Yichang 443000, Hubei
    3 Angel Yeast (Chongzuo) Co., Ltd., Chongzuo 532200, Guangxi
  • Received:2019-03-01 Accepted:2019-04-28 Online:2019-10-16 Published:2019-10-28
  • Contact: JunPeng HU

摘要:

【目的】 评定肉鸡对酵母水解物的表观代谢能、氮校正表观代谢能、回肠表观氨基酸消化率、标准回肠氨基酸消化率、全肠道表观氨基酸消化率,拟为酵母水解物在肉鸡饲粮中的广泛应用提供基础参数。【方法】 选择18 d、体重无差异的科宝白羽肉仔鸡160只,随机分成对照组和试验组,每组8个重复,每个重复10只试验鸡,公母各半。对照组饲喂以玉米淀粉、葡萄糖、纤维、大豆油配制的无氮日粮,试验组饲喂以酵母水解物为唯一粗蛋白质来源的半纯合日粮,对照组和试验组均添加0.5%的二氧化钛作为外源指示剂。试验期间自由采食,全收粪法收集试验鸡22—24 d粪便,并统计该期间肉鸡采食量,通过检测日粮以及粪便中总能、含氮量来计算酵母水解物表观代谢能值和氮校正表观代谢能值。粪便收集完后自由采食,26日龄麻醉剖解收集回肠后半段食靡,分别检测日粮、回肠食糜中氨基酸及二氧化钛含量,计算酵母水解物回肠表观氨基酸消化率、标准回肠氨基酸消化率、全肠道表观氨基酸消化率。【结果】 (1)酵母水解物总能值为18.19 MJ·kg -1,表观代谢能值为11.22 MJ·kg -1,氮校正表观代谢能为10.17 MJ·kg -1,其有效能值与普通豆粕相当。(2)酵母水解物粗蛋白质含量为41.7%,总氨基为36.97%,必需氨基酸与非必需氨基酸之比为44﹕56,与普通豆粕接近;酵母水解物肉鸡限制性氨基酸依次为Met、Met+Cys、Arg、Leu、Ile、Phe+Tyr、Val、His、Lys、Thr、Trp,与豆粕差异较大。(3)酵母水解物回肠表观氨基酸消化率、标准回肠氨基酸消化率、全肠道表观氨基酸消化率均大于70%,肉鸡可利用限制性氨基酸依次为Met、Met+Cys、Arg、Leu、Ile、Thr、Phe+Tyr、His、lys、Val、Trp,蛋氨酸、精氨酸为第一、第二限制性可利用氨基酸,亮氨酸、异亮氨酸为第三、第四限制性可利用氨基酸,苏氨酸可利用较差,为第五限制性可利用氨酸,酵母水解物限制性氨基酸与豆粕差异较大。【结论】 酵母水解物是一种蛋白饲料原料,其蛋白质含量、有效能值与豆粕相当,但其氨基酸组成及氨基酸可利用率与豆粕存在较大差异。因此,酵母水解物在肉鸡日粮中应用,需要考虑补充不同氨基酸或者搭配不同蛋白质饲料来平衡氨基酸的需要。

关键词: 酵母水解物, 肉鸡, 代谢能, 氨基酸消化率

Abstract:

【Objective】 The purpose of this study was to evaluate the apparent metabolic energy, nitrogen-corrected apparent metabolic energy, ileal apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate in broilers, so as to provide the reference for the wide application of yeast hydrolysate in broiler diets. 【Method】 A total of 160 Cobb white-feathered broilers at 18 days old with no difference in body weight were randomly divided into the control group and experimental group. There were 8 replicates in each group, and 10 chickens with half male and half female were in each replicate. The control group was fed a nitrogen-free diet consisting of corn starch, glucose, fiber and soybean oil, and the experimental group was fed a semi-homozygous diet using yeast hydrolysate as the sole crude protein source. Furthermore, the control group and the experimental group were fed with 0.5% titanium dioxide, respectively, as an exogenous indicator. During the whole experiment, free feeding was available for broilers, feces were collected on 22-24 days using total fecal collection method, and the feed intake of broilers was counted. Further, the apparent metabolic energy of yeast hydrolysate and nitrogen-corrected apparent metabolic energy were calculated by measuring the total energy and nitrogen content in both diets and feces of broilers. After26 days of experiment, the latter half of ileum was dissected under anesthesia, the chime was taken out, and the contents of amino acids and titanium dioxide in both diet and ileal chyme were measured to calculate the apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate. 【Result】 (1) The total energy value of yeast hydrolysate was 18.19 MJ·kg -1, the apparent metabolic energy value was 11.22 MJ·kg -1, and the nitrogen-corrected apparent metabolic energy was 10.17 MJ·kg -1. Effective energy was equivalent to that of common soybean meal. (2) Crude protein content of yeast hydrolysate was 41.7%, and total amino acid was 36.97%. The ratio of essential amino acid to dispensable amino acid was 44:56, which was close to that of common soybean meal. The limiting amino acids of yeast hydrolysate were Met, Met+Cys, Arg, Leu, Ile, Phe+Tyr, Val, His, lys, Thr and Trp, which were different from soybean meal. (3) The ileal apparent amino acid digestibility, standard ileal amino acid digestibility and total intestinal apparent amino acid digestibility of yeast hydrolysate were all higher than 70%. The available limiting amino acids were Met, Met+Cys, Arg, Leu, Ile, Thr, Phe+Tyr, His, Lys, Val, and Trp. Methionine and arginine were the first and the second limiting amino acids, and leucine and isoleucine were the third and the fourth limiting amino acids, respectively. Threonine was poorly available, and was regarded as the fifth restrictive available amino acid. In addition, the limiting amino acids of yeast hydrolysate were quite different to soybean meal. 【Conclusion】 Yeast hydrolysate was a kind of protein feed material. Its protein content and effective energy value were similar to soybean meal, but its amino acid composition and availability were quite different to soybean meal. Therefore, in the application of yeast hydrolysate in broiler diet, it was necessary to consider the need of supplementing different amino acids or mixing different protein feeds to balance amino acids.

Key words: hydrolyzed yeast, broiler, metabolizable energy, amino acid digestibility