中国农业科学 ›› 2019, Vol. 52 ›› Issue (23): 4191-4200.doi: 10.3864/j.issn.0578-1752.2019.23.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦种质资源耐热性评价

王小波1,关攀锋1,辛明明1,汪永法1,陈希勇2,赵爱菊2,刘曼双3,李红霞3,张明义4,逯腊虎4,魏亦勤5,刘旺清5,张金波6,倪中福1,姚颖垠1,胡兆荣1,彭惠茹1,孙其信1()   

  1. 1 中国农业大学农学院/农业生物技术国家重点实验室/杂种优势研究与利用教育部重点实验室/作物遗传改良北京市重点实验室,北京 100193
    2 河北省农林科学院粮油作物研究所/河北省作物遗传育种实验室,石家庄 050035
    3 西北农林科技大学农学院,陕西杨凌 712100
    4 山西省农业科学院小麦研究所,山西临汾 041000
    5 宁夏农林科学院农作物研究所,宁夏永宁 750105
    6 新疆农业科学院农作物品种资源研究所,乌鲁木齐 830091
  • 收稿日期:2019-05-15 接受日期:2019-08-03 出版日期:2019-12-01 发布日期:2019-12-01
  • 通讯作者: 孙其信
  • 作者简介:王小波,E-mail:xplayplus@hotmail.com
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(31561143013);国家重点研发计划(2016YFD0100102);宁夏农林科学院自主研发项目(NKYJ-17-15)

Evaluation of Heat Tolerance in Wheat Germplasm Resources

WANG XiaoBo1,GUAN PanFeng1,XIN MingMing1,WANG YongFa1,CHEN XiYong2,ZHAO AiJu2,LIU ManShuang3,LI HongXia3,ZHANG MingYi4,LU LaHu4,WEI YiQin5,LIU WangQing5,ZHANG JinBo6,NI ZhongFu1,YAO YingYin1,HU ZhaoRong1,PENG HuiRu1,SUN QiXin1()   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Key Laboratory of Crop Genetic Improvement, Beijing 100193
    2 Institute of Cereal and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences/Hebei Crop Genetic Breeding Laboratory, Shijiazhuang 050035
    3 Agronomy College, Northwest A&F University, Yangling 712100, Shaanxi;
    4 Institute of Wheat, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi
    5 Crop Research Institute of Ningxia Agriculture and Forestry Sciences, Yongning 750105, Ningxia
    6 Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2019-05-15 Accepted:2019-08-03 Online:2019-12-01 Published:2019-12-01
  • Contact: QiXin SUN

摘要:

【目的】利用热感指数作为耐热性鉴定指标,分别对冬、春小麦种质资源进行高通量耐热性鉴定,筛选耐热种质资源,为小麦耐热性育种提供材料基础。【方法】冬小麦材料采用延期播种、春小麦材料种植在温度有显著差异的地理环境下,人为致使小麦灌浆期遭遇高温胁迫。根据不同环境处理的千粒重值计算冬、春小麦各个材料的热感指数。依据热感指数,对来自中国不同小麦生态区和国外不同地区和组织的1 325份小麦种质资源,包括688份冬小麦和637份春小麦,分别进行耐热性评价。热感指数小于0.5为极耐热材料、大于等于0.5小于1为中等耐热材料、大于等于1小于1.5为中等热敏感材料、大于等于1.5为极敏感材料。【结果】冬小麦和春小麦热胁迫处理组灌浆期平均最高温度分别高于对照组1.91℃和7.09℃,且热胁迫处理组千粒重与对照组相比均有显著降低。根据热感指数分级评价结果,极耐热冬、春小麦材料31和48份,占供试材料的4.51%和7.54%;极敏感冬、春小麦材料19和58份,占供试材料的2.76%和9.11%;其余大多数材料为中间类型(中等耐热材料和中等热敏感材料)。从中国小麦生态区域的地理分布来看,来自南部麦区(西南冬麦区、青藏春冬麦区、长江中下游冬麦区)的冬小麦材料耐热性整体高于来自北部麦区(北部冬麦区、黄淮冬麦区)的冬小麦材料。对于春小麦,来自新疆春冬麦区的材料耐热性最强,平均热感指数为0.70,且其中88.00%的材料属于耐热材料(极耐热材料或中等耐热材料);此外,来自国际干旱地区农业研究中心的春小麦平均热感指数为0.88,也表现出较强的耐热性。来自CIMMYT的人工合成六倍体材料耐热性最弱,平均HSI为1.18,其中69.58%的材料为热敏感材料(中等热敏感材料和极敏感材料)。【结论】采用延期播种或在高温的地理环境下种植能使小麦在灌浆期遭遇高温胁迫。以千粒重热感指数作为评价指标,对1 325份小麦种质资源进行高通量耐热性鉴定,综合考虑正常条件下的产量潜力和高温条件下的耐热性,筛选出优异耐热资源103份,可用于相应生态区小麦的耐热性遗传改良。

关键词: 小麦, 种质资源, 耐热性, 热感指数, 生态区

Abstract:

【Objective】 High-throughput evaluation of winter and spring wheat accessions for heat tolerance via heat susceptibility index (HSI) could provide the potentially superior accessions for heat-tolerant breeding programs. 【Method】 In order to expose plants to high temperatures during grain filling period, winter wheat accessions were sown in normal and late seasons, and spring wheat accessions were sown in different geographical environments with contrasting temperatures. The thousand grain weight (TGW) of winter and spring wheat accessions were measured under normal and heat stress environments, respectively. HSI was calculated from the TGW data of two different conditions. Using heat susceptibility index, 1 325 wheat germplasms from different wheat ecological zones of China, and international areas and organizations, including 688 winter wheat accessions and 637 spring wheat accessions, were evaluated for heat tolerance. Genotypes were classified into four tolerant grades, i.e. highly heat-tolerant (HSI<0.50), medium heat-tolerant (0.5≤HSI<1), medium heat-susceptible (1≤HSI<1.5) and highly heat-susceptible (HSI>1.5). 【Result】 The average maximum temperature at grain filling stage under heat stress condition was higher than that of the controls by 1.91℃ for winter wheat and 7.09℃ for spring wheat, respectively. TGW under heat stress condition was significantly lower than that of the corresponding control. According to the grading evaluation results of HSI, thirty-one and 48 highly heat-tolerant winter and spring wheat accessions accounted for 4.51% and 7.54% of the test materials, 19 and 58 highly heat-susceptible winter and spring wheat accessions accounted for 2.76% and 9.11% of the tested materials, and the rest were medium germplasms (medium heat-tolerant and medium heat-susceptible). According to the geographical distribution of wheat ecological regions, winter wheat from the southern wheat region (Southwestern Winter Wheat Zone, Qinghai Tibetan Plateau Spring and Winter Wheat Zone, and Middle and Lower Yangtze Valley Winter Wheat Zone) were more tolerant than that from northern wheat region (Northern Winter Wheat Zone, and Yellow and Huai River Winter Wheat Zone). For spring wheat, the average HSI of accessions from Xinjiang Spring and Winter Wheat Zone was 0.70, which was the most heat-tolerant, and 88.00% of the accessions belong to heat-tolerant (highly heat-tolerant or medium heat-tolerant) germplasms. In addition, the average HSI of spring wheat from the International Center for Agricultural Research in the Dry Areas (ICARDA) with 0.88 showed heat-tolerant. The synthetic hexaploid wheats from CIMMYT had the weakest heat tolerance, with an average HSI of 1.18, of which 69.58% were heat-susceptible germplasms (medium heat-susceptible and highly heat-susceptible). 【Conclusion】 Delayed sowing or planting in environment with high temperatures can make wheat encounter high temperature stress at grain filling stage. High-throughput method based on the HSI of TGW was performed to evaluate heat tolerance of 1 325 winter and spring wheat germplasms. Overall, one hundred and three heat-tolerant germplasms with high yield potential were identified, which could be used as parents developing heat-tolerant wheat varieties.

Key words: wheat, germplasm, heat-tolerance, heat susceptible index, ecological zone