[1] |
BARTON P J R, MULLEN A J, CULLEN M E, DHOOT G K, SIMON-CHAZOTTES D, GUÉNET J L. Genes encoding troponin I and troponin T are organized as three paralogous pairs in the mouse genome. Mammalian Genome, 2000, 11(10):926-929. doi: 10.1007/s003350010171.
doi: 10.1007/s003350010171
|
[2] |
GONG H Y, HATCH V, ALI L, LEHMAN W, CRAIG R, TOBACMAN L S. Mini-thin filaments regulated by troponin-tropomyosin. PNAS, 2005, 102(3):656-661. doi: 10.1073/pnas.0407225102.
doi: 10.1073/pnas.0407225102
|
[3] |
CHEN H, ZHANG J, YU B, LI L, SHANG Y. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat. Gene, 2015. 573(1):123-128.
doi: 10.1016/j.gene.2015.07.038
|
[4] |
EBASHI S. Third component participating in the superprecipitation of ‘natural actomyosin’. Nature, 1963, 200:1010. doi: 10.1038/ 2001010a0.
doi: 10.1038/ 2001010a0
|
[5] |
OTSUKI I, MASAKI T, NONOMURA Y, EBASHI S. Periodic distribution of troponin along the thin filament. Journal of Biochemistry, 1967, 61(6):817-819. doi: 10.1093/oxfordjournals. jbchem.a128619.
doi: 10.1093/oxfordjournals. jbchem.a128619
|
[6] |
STEFANCSIK R, RANDALL J D, MAO C, SARKAR S. Structure and sequence of the human fast skeletal troponin T (TNNT3) gene: insight into the evolution of the gene and the origin of the developmentally regulated isoforms. Comparative and Functional Genomics, 2003, 4(6):609-625. doi: 10.1002/cfg.343.
doi: 10.1002/cfg.343
|
[7] |
FLICKER P F, PHILLIPS G N, Jr COHEN C. Troponin and its interactions with tropomyosin. An electron microscope study. Journal of Molecular Biology, 1982. 162(2):495-501.
doi: 10.1016/0022-2836(82)90540-X
|
[8] |
CHAUDHURI T, MUKHERJEA M, SACHDEV S, RANDALL J D, SARKAR S. Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. Journal of Molecular Biology, 2005, 352(1):58-71. doi: 10.1016/j.jmb.2005.06.066.
doi: 10.1016/j.jmb.2005.06.066
|
[9] |
BLACK A J, RAVI S, JEFFERSON L S, KIMBALL S R, SCHILDER R J. Dietary fat quantity and type induce transcriptome-wide effects on alternative splicing of pre-mRNA in rat skeletal muscle. The Journal of Nutrition, 2017, 147(9):1648-1657. doi: 10.3945/jn.117. 254482.
doi: 10.3945/jn.117. 254482
|
[10] |
JU Y, LI J, XIE C, RITCHLIN C T, XING L, HILTON M J, SCHWARZ E M. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice. Genesis, 2013. 51(9):667-675.
|
[11] |
BLACK A J, SCHILDER R J, KIMBALL S R. Palmitate-and C6 ceramide-induced Tnnt3 pre-mRNA alternative splicing occurs in a PP2A dependent manner. Nutrition & Metabolism, 2018, 15:87. doi: 10.1186/s12986-018-0326-3.
doi: 10.1186/s12986-018-0326-3
|
[12] |
LEE Y, RIO D C. Mechanisms and regulation of alternative pre-mRNA splicing. Annual Review of Biochemistry, 2015, 84:291-323. doi: 10.1146/annurev-biochem-060614-034316.
doi: 10.1146/annurev-biochem-060614-034316
|
[13] |
NARO C, SETTE C. Phosphorylation-mediated regulation of alternative splicing in cancer. International Journal of Cell Biology, 2013, 2013:151839. doi: 10.1155/2013/151839.
doi: 10.1155/2013/151839
|
[14] |
LOPEZ A J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annual Review of Genetics, 1998, 32:279-305. doi: 10.1146/annurev.genet.32.1.279.
doi: 10.1146/annurev.genet.32.1.279
|
[15] |
GRAVELEY B R. Alternative splicing: increasing diversity in the proteomic world. Trends in Genetics, 2001, 17(2):100-107. doi: 10.1016/s0168-9525(00)02176-4.
doi: 10.1016/s0168-9525(00)02176-4
|
[16] |
BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 2017, 18(7):437-451. doi: 10.1038/nrm.2017.27.
doi: 10.1038/nrm.2017.27
|
[17] |
SUNYAEV S, HANKE J, BRETT D, AYDIN A, ZASTROW I, LATHE W, BORK P, REICH J. Individual variation in protein-coding sequences of human genome. Advances in Protein Chemistry, 2000, 54:409-437. doi: 10.1016/s0065-3233(00)54012-1.
doi: 10.1016/s0065-3233(00)54012-1
|
[18] |
MUROYA S, NAKAJIMA I, CHIKUNI K. Amino acid sequences of multiple fast and slow troponin T isoforms expressed in adult bovine skeletal muscles. Journal of Animal Science, 2003, 81(5):1185-1192. doi: 10.2527/2003.8151185x.
doi: 10.2527/2003.8151185x
|
[19] |
MUROYA S, OHNISHI-KAMEYAMA M, OE M, NAKAJIMA I, CHIKUNI K. Postmortem changes in bovine troponin T isoforms on two-dimensional electrophoretic gel analyzed using mass spectrometry and western blotting: the limited fragmentation into basic polypeptides. Meat Science, 2007, 75(3):506-514. doi: 10.1016/j.meatsci.2006. 08.012.
doi: 10.1016/j.meatsci.2006. 08.012
|
[20] |
JIN J P, SAMANEZ R A. Evolution of a metal-binding cluster in the NH2-terminal variable region of avian fast skeletal muscle troponin T: functional divergence on the basis of tolerance to structural drifting. Journal of Molecular Evolution, 2001, 52(2):103-116. doi: 10.1007/ s002390010139.
doi: 10.1007/ s002390010139
|
[21] |
KLEIN P, OLOKO M, ROTH F, MONTEL V, MALERBA A, JARMIN S, GIDARO T, POPPLEWELL L, PERIE S, LACAU ST GUILY J, DE LA GRANGE P, ANTONIOU M N, DICKSON G, BUTLER-BROWNE G, BASTIDE B, MOULY V, TROLLET C. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Research, 2016. 44(22):10929-10945.
doi: 10.1093/nar/gkw703
|
[22] |
WEI B, JIN J P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene, 2016, 582(1):1-13. doi: 10.1016/j.gene.2016.01.006.
doi: 10.1016/j.gene.2016.01.006
|
[23] |
SCHIAFFINO S, SANDRI M, MURGIA M. Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda, Md), 2007, 22:269-278. doi: 10.1152/physiol. 00009.2007.
doi: 10.1152/physiol. 00009.2007
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
|
[25] |
MEDFORD R M, NGUYEN H T, DESTREE A T, SUMMERS E, NADAL-GINARD B. A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Medical Acupuncture, 1984, 38(2):409-421. doi: 10.1016/0092-8674(84)90496-3.
doi: 10.1016/0092-8674(84)90496-3
|
[26] |
JAYASINGHE R G, CAO S, GAO Q, WENDL M C, VO N S, REYNOLDS S M, ZHAO Y, CLIMENTE-GONZÁLEZ H, CHAI S, WANG F, VARGHESE R, HUANG M, LIANG W W, WYCZALKOWSKI M A, SENGUPTA S, LI Z, PAYNE S H, FENYÖ D, MINER J H, WALTER M J, CANCER GENOME ATLAS RESEARCH NETWORK, VINCENT B, EYRAS E, CHEN K, SHMULEVICH I, CHEN F, DING L. Systematic analysis of splice-site-creating mutations in cancer. Cell Reports, 2018, 23(1): 270-281.e3. doi: 10.1016/j.celrep. 2018.03.052.
doi: 10.1016/j.celrep. 2018.03.052
|
[27] |
BREITBART R E, NADAL-GINARD B. Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual inter species divergence. Journal of Molecular Biology, 1986, 188(3):313-324. doi: 10.1016/0022-2836(86)90157-9.
doi: 10.1016/0022-2836(86)90157-9
|
[28] |
WANG J, JIN J P. Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene, 1997, 193(1):105-114. doi: 10.1016/ s0378-1119(97)00100-5.
doi: 10.1016/ s0378-1119(97)00100-5
|
[29] |
BRIGGS M M, SCHACHAT F. Origin of fetal troponin T: developmentally regulated splicing of a new exon in the fast troponin T gene. Developmental Biology, 1993, 158(2):503-509. doi: 10.1006/ dbio.1993.1208.
doi: 10.1006/ dbio.1993.1208
|
[30] |
WU Q L, JHA P K, DU Y, LEAVIS P C, SARKAR S. Overproduction and rapid purification of human fast skeletal beta troponin T using Escherichia coli expression vectors: functional differences between the alpha and beta isoforms. Cancer Biology & Medicine, 1995, 155(2):225-230. doi: 10.1016/0378-1119(94)00846-k.
doi: 10.1016/0378-1119(94)00846-k
|
[31] |
CHALFANT C E, RATHMAN K, PINKERMAN R L, WOOD R E, OBEID L M, OGRETMEN B, HANNUN Y A. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. The Journal of Biological Chemistry, 2002, 277(15):12587-12595. doi: 10.1074/jbc.m112010200.
doi: 10.1074/jbc.m112010200
|
[32] |
BRANDIMARTI P, COSTA-JÚNIOR J M, FERREIRA S M, PROTZEK A O, SANTOS G J, CARNEIRO E M, BOSCHERO A C, REZENDE L F. Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. The Journal of Endocrinology, 2013, 219(2):173-182. doi: 10.1530/joe- 13-0177.
doi: 10.1530/joe- 13-0177
|
[33] |
MARDEN J H, FESCEMYER H W, SAASTAMOINEN M, MACFARLAND S P, VERA J C, FRILANDER M J, HANSKI I. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history. Journal of Experimental Biology, 2008. 211(Pt 23):3653-3660.
doi: 10.1242/jeb.023903
|
[34] |
SCHILDER R J, KIMBALL S R, MARDEN J H, JEFFERSON L S. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats. The Journal of Experimental Biology, 2011, 214(pt 9):1523-1532. doi: 10.1242/jeb.051763.
doi: 10.1242/jeb.051763
|
[35] |
BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biology, 2012. 4(2).
|
[36] |
CHAL J, POURQUIÉ O. Making muscle: skeletal myogenesis in vivo and in vitro. Development (Cambridge, England), 2017, 144(12):2104-2122. doi: 10.1242/dev.151035.
doi: 10.1242/dev.151035
|
[37] |
DU M, WANG B, FU X, YANG Q, ZHU M J. Fetal programming in meat production. Meat Science, 2015, 109:40-47. doi: 10.1016/j. meatsci.2015.04.010.
doi: 10.1016/j. meatsci.2015.04.010
|
[38] |
WEI B, LU Y, JIN J P. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. The Journal of Physiology, 2014, 592(6):1367-1380. doi: 10.1113/ jphysiol.2013.268177.
doi: 10.1113/ jphysiol.2013.268177
|
[39] |
DALY S B, SHAH H, O'SULLIVAN J, ANDERSON B, BHASKAR S, WILLIAMS S, AL-SHEQAIH N, MUEED BIDCHOL A, BANKA S, NEWMAN W G, GIRISHA K M. Exome Sequencing Identifies a Dominant TNNT3 Mutation in a Large Family with Distal Arthrogryposis. Molecular Syndromology, 2014. 5(5):218-228.
|
[40] |
SANDARADURA S A, BOURNAZOS A, MALLAWAARACHCHI A, CUMMINGS B B, WADDELL L B, JONES K J, TROEDSON C, SUDARSANAM A, NASH B M, PETERS G B, ALGAR E M, MACARTHUR D G, NORTH K N, BRAMMAH S, CHARLTON A, LAING N G, WILSON M J, DAVIS M R, COOPER S T. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant. Human Mutation, 2018, 39(3):383-388. doi: 10.1002/humu.23385.
doi: 10.1002/humu.23385
|
[41] |
BIESIADECKI B J, CHONG S M, NOSEK T M, JIN J P. Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry, 2007, 46(5):1368-1379. doi: 10.1021/bi061949m.
doi: 10.1021/bi061949m
|