中国农业科学 ›› 2021, Vol. 54 ›› Issue (13): 2843-2857.doi: 10.3864/j.issn.0578-1752.2021.13.013
李艳林1(),SHAHID Iqbal1,侍婷1,宋娟2,倪照君1,高志红1()
收稿日期:
2020-08-27
修回日期:
2020-10-14
出版日期:
2021-07-01
发布日期:
2021-07-12
通讯作者:
高志红
作者简介:
李艳林,E-mail: 基金资助:
LI YanLin1(),SHAHID Iqbal1,SHI Ting1,SONG Juan2,NI ZhaoJun1,GAO ZhiHong1()
Received:
2020-08-27
Revised:
2020-10-14
Online:
2021-07-01
Published:
2021-07-12
Contact:
ZhiHong GAO
摘要:
【目的】分析梅PmARF17的生物学功能,探究梅花发育进程中其表达丰度与内源激素动态变化的关系,为梅花发育的调控研究提供依据。【方法】以梅品种‘大嵌蒂’为试材,克隆PmARF17,利用生物信息学软件分析基因结构、系统进化及其与其他物种同源蛋白的差异;亚细胞定位确定PmARF17蛋白在细胞中作用的部位;以梅品种‘大嵌蒂’和‘龙眼’不同发育阶段的花芽、叶芽、花器官为试材,利用qRT-PCR检测PmARF17时空表达模式,通过UPLC法测定IAA、GA3、ABA、ZT含量的动态变化,并与PmARF17的表达进行相关性分析;克隆PmARF17启动子,分析启动子的顺式作用元件,利用瞬时表达解析PmARF17与GA3的调控模式。【结果】从梅品种‘大嵌蒂’中克隆得到PmARF17,系统进化树分析表明PmARF17蛋白与其他植物的ARF蛋白序列高度同源;亚细胞定位表明其作用于细胞核和细胞膜上;qRT-PCR表达和内源激素含量的相关性分析表明,PmARF17的表达与IAA含量的变化趋势没有明显的相关性。PmARF17在雌蕊完好花芽中的表达水平相对不完全花芽显著上调,而GA3含量与PmARF17的表达趋势一致。ABA和ZT含量总体上与PmARF17的表达呈相反的趋势,表明两者可能抑制PmARF17的表达。PmARF17启动子含有GA顺式元件,且具有启动活性和组织表达特异性,在花瓣、雄蕊及根部特异表达。【结论】 PmARF17可能是梅花发育的正调控基因,促进梅雌蕊的正常发育。PmARF17的表达可能受到GA3的正调控,其可能通过作用于雄蕊和花瓣,进而影响梅的雌蕊发育进程。
李艳林,SHAHID Iqbal,侍婷,宋娟,倪照君,高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学, 2021, 54(13): 2843-2857.
LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume[J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
表1
引物序列及用途"
引物名称Primer name | 引物序列 Primer Sequence (5′-3′) | 引物用途 Primer use |
---|---|---|
PmARF17gene-F | GCAGACATGAAACCTCCTCCTATGC | PmARF17基因扩增 Amplification of PmARF17 gene |
PmARF17gene-R | CAAGCCATTGTATCATTGCTATCC | |
PmARF17 GFP-F | GGAAGATCTATGGGGGGTCTAATCGATC | 亚细胞定位 Subcellular localization |
PmARF17 GFP-R | GGAAGATCTTCCTTGTAAGCAGCTTTCC | |
PmARF17qPCR-F | TTAGTGGCAGTCAGGATG | 实时荧光定量PCR qRT-PCR |
PmARF17qPCR-R | GCAGTTGAGGTTGAGTTG | |
Actin-F | TGAAGCATACACCTATGATGATGAAG | 内参引物 Actin primer |
Actin-R | CTTTGACAGCACCAGTAGATTCC | |
PmARF17 promoter-F | GAGATGCCTAACACTCTAAAGTC | PmARF17启动子扩增 Amplification of PmARF17promoter |
PmARF17 promoter-R | CCTCCGTTGCACTGTTCAGATCG | |
Promoter-ApaI-F | GGGGCCCGAGATGCCTAACACTCTAAAGTC | 瞬时表达试验 Transient expression |
Promoter-SmaI-R | CCCCCGGGGTGGAAATAAACAAAAATTGTA |
图1
PmARF17的基因结构、系统进化树及PmARF17蛋白与其他植物的同源性比较 A:PmARF17的cDNA和推导的氨基酸序列(下划线标出最大ORF,阴影为保守区);B:PmARF17蛋白与其他植物的系统进化树分析;C:PmARF17的基因结构;D:PmARF17蛋白与其他植物的同源性比较[蓝色框为B3 DNA binding domain,红色框为Auxin response factor元件。1.Seq:梅;2.Seq:山杏;3.Seq:桃;4.Seq:甜樱桃;5.Seq:苹果;6.Seq:白梨;7.Seq:葡萄;8.Seq:野草莓;9.Seq:杨树;10.Seq:拟南芥;11.Seq:烟草;12.Seq:番茄]"
图7
PmARF17 promoter-GUS融合表达载体的结构及PmARF17启动子的瞬时表达 A:pBI121-PmARF17 promoter-GUS融合载体结构图;B:pBI121-PmARF17 promoter-GUS侵染的拟南芥苗GUS染色结果;C:阴性对照GUS染色结果(未经菌液侵染);D:阳性对照GUS染色结果(pBI121空载侵染);E:B中根部的放大图;F、G:pBI121-PmARF17 promoter-GUS在花瓣中GUS染色结果;H:pBI121-PmARF17 promoter-GUS在雄蕊中GUS染色结果;I:从H中分离出的蓝色区域高倍镜图;J:阴性对照中花器官GUS染色结果,其雄蕊与H中的雄蕊具有相同组分;K、L:阳性对照中不同根部、花器官、叶片的GUS染色结果 "
[1] | 孙海龙, 宋娟, 高志红, 倪照君, 章镇. 果梅PmKNAT2基因全长cDNA克隆及表达分析. 中国农业科学, 2014, 47(17):3444-3452. |
SUN H L, SONG J, GAO Z H, NI ZJ, ZHANG Z. Isolation and expression analysis of PmKNAT2 gene from Japanese apricot. Scientia Agricultura Sinica, 2014, 47(17):3444-3452. (in Chinese) | |
[2] |
BOAVIDA L C, BORGES F, BECKER J D, FEIJO J A. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiology, 2011, 155(4):2066-2080.
doi: 10.1104/pp.110.169813 |
[3] |
ORI N. Dissecting the biological functions of ARF and Aux/IAA genes. Plant Cell, 2019, 31(6):1210-1211.
doi: 10.1105/tpc.19.00330 |
[4] | CAI H Y, CHAI M N, CHEN F Q, HUANG Y M, ZAHNG M, HE Q, LIU L P, YAN M K, QIN Y. HBI1 acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways. New Phytologist, 2020. doi: 10.1111/nph.16840. |
[5] |
HASSANKHAH A, RAHEMI M, MOZAFARI M R, VAHDATI K. Flower development in walnut: Altering the flowering pattern by gibberellic acid application. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46(2):700-706.
doi: 10.15835/nbha46211183 |
[6] |
HUANG Y M, ZENG X C, CAO H P. Hormonal regulation of floret closure of rice (Oryza sativa). PLoS ONE, 2018, 13(6):e0198828.
doi: 10.1371/journal.pone.0198828 |
[7] |
MARZEC M, ALQUDAH A M. Key hormonal components regulate agronomically important traits in barley. International Journal of Molecular Sciences, 2018, 19(3):795.
doi: 10.3390/ijms19030795 |
[8] |
REZAUL I M, FENG B H, CHEN T T, FU W M, ZHANG C X, TAO L X, FU G F. Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum, 2019, 165:644-663.
doi: 10.1111/ppl.2019.165.issue-3 |
[9] | ULMASOV T, HAGEN G, GUILFOYLE T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276(5320):1864-1868. |
[10] | 马军, 徐通达. 植物非经典生长素信号转导通路解析. 生物技术通报, 2020, 36(7):15-22. |
MA J, XU T D. Non-canonical auxin signaling pathway in plants. Biotechnology Bulletin, 2020, 36(7):15-22. (in Chinese) | |
[11] |
VERNOUX T, ROBERT S. Auxin 2016: A burst of auxin in the warm south of China. Development, 2017, 144:533-540.
doi: 10.1242/dev.144790 |
[12] |
SONG J, GAO Z H, HUO X M, SUN H L, XU Y S, SHI T, NI Z J. Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiological Plantarum, 2015, 37:145.
doi: 10.1007/s11738-015-1882-z |
[13] |
SESSIONS A, NEMHAUSER J L, MCCALL A, ROE J L, FELDMANN K A, ZAMBRYSKI P C. ETTIN patterns the Arabidopsis flower meristem and reproductive organs. Development, 1997, 124:4481-4491.
doi: 10.1242/dev.124.22.4481 |
[14] |
LIU X G, DINH T T, LI D M, SHI B H, LI Y P, CAO X W, GUO L, PAN Y Y, JIAO Y L, CHEN X M. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant Journal, 2014, 80:629-641.
doi: 10.1111/tpj.12658 |
[15] |
ZHANG K, WANG R Z, ZI H L, LI Y P, CAO X W, LI D M, GUO L, TONG J H, PAN Y Y, JIAO Y L, LIU R Y, XIAO L T, LIU X G. AUXIN RESPONSE FACTOR3 regulates flower meristem determinacy by repressing ctokinin biosynthesis and signaling. The Plant Cell, 2018, 30:324-346.
doi: 10.1105/tpc.17.00705 |
[16] | ZHENG Y, ZHANG K, GUO L, LIU X G. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. Plant Signaling & Behavior, 2018, 13(5):1559-2324. |
[17] | 褚孟嫄, 黄金城. 梅树花芽形态分化及其物质代谢的研究. 北京林业大学学报, 1995, 17(S1):68-74. |
CHU M Y, HUANG J C. Studies on the morphological differentiation and the substanee metabolism in Meizi (Prunus mumeSieb. et Zucc.) . Journal of Beijing Forestry University, 1995, 17(S1):68-74. (in Chinese) | |
[18] |
DE JONG M, WOLTERS-ARTS M, FERON R, MARIANI C, VRIEZEN W H. The Solanum lycopersicum AUXIN RESPONSE FACTOR7 (S1ARF7) mediates cross-talk between auxin and gibberellins signaling during tomato fruit set and development. Journal of Experimental Botany, 2011, 62(2):617-626.
doi: 10.1093/jxb/erq293 |
[19] |
DE JONG M, MARIANI C, VRIEZEN W H. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 2009, 60(5):1523-1532.
doi: 10.1093/jxb/erp094 |
[20] | 张文颖, 王晨, 朱旭东, 马超, 王文然, 冷翔鹏, 郑婷, 房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征. 中国农业科学, 2018, 51(16):3130-3146. |
ZHANG W Y, WANG C, ZHU X D, MA C, WANG W R, LENG X P, ZHENG T, FANG J G. Genome-wide identification and expression of DELLA protein gene family during the development of grape berry induced by exogenous GA. Scientia Agricultura Sinica, 2018, 51(16):3130-3146. (in Chinese) | |
[21] |
FU X D, HARBERD N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003, 421:740-743.
doi: 10.1038/nature01387 |
[22] |
NEMHAUSER J L, HONG F X, CHORY J. Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell, 2006, 126:467-475.
doi: 10.1016/j.cell.2006.05.050 |
[23] |
BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering inArabidopsis. Journal of Integrative Plant Biology, 2020, 62:118-131.
doi: 10.1111/jipb.v62.1 |
[24] |
WEISS D, ORI N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiology, 2007, 144:1240-1246.
doi: 10.1104/pp.107.100370 |
[25] | XIAO T, LIU J L. Study on the relation between auxin, zeatin, cytoplasmic male sterility in Maize (Zea mays L.). Acta Agronomica Sinica, 1994, 20(1):26-31. |
[26] | 李英贤, 张爱民, 黄铁城. 小麦细胞质雄性不育与花药组织内源激素的关系. 农业生物技术学报, 1996, 4(4):307-313. |
LI Y X, ZHANG A M, HUANG T C. Relationship between wheat cytoplasmic male sterility and the content of endogenous hormones in the anther. Journal of Agricultural Biotechnology, 1996, 4(4):307-313. (in Chinese) | |
[27] | 张明方, 陈竹君, 汪炳良, 董伟敏. 榨菜胞质雄性不育系和保持系花器发育过程中内源激素变化. 浙江农业大学学报, 1997, 23(2):154-157. |
ZHANG M F, CHEN Z J, WANG B L, DONG W M. Hormonal changes in flower organs of cytoplasmic male-sterile line and its maintainance line of tsatsai (tuber mustard). Journal of Zhejiang Agricultural University, 1997, 23(2):154-157. (in Chinese) | |
[28] | 田长恩, 张明永, 段俊, 黄毓文, 刘鸿先, 梁承邺. 油菜细胞质雄性不育系及其保持系不同发育阶段内源激素动态变化初探. 中国农业科学, 1998, 31(4):20-25. |
TIAN C E, ZHANG M Y, DUAN J, HUANG Y W, LIU H X, LIANG C Y. Preliminary study on the changes of phytohormones at different development stage in cytoplamic male sterility line and its maintainer of rape. Scientia Agricultura Sinica, 1998, 31(4):20-25. (in Chinese) | |
[29] | 肖华山, 吕柳新, 陈志彤. 荔枝花发育过程中雌雄蕊内源激素的动态变化. 应用与环境生物学报, 2003, 9(1):11-15. |
XIAO H S, LV L X, CHEN Z T. Dynamic changes of endogenous hormone in litchi (Litchi chinensis Sonn.) pistil and stamen during flower development . Chinese Journal of Applied & Environmental Biology, 2003, 9(1):11-15. (in Chinese) | |
[30] | 胡香英. ‘紫娘喜’和‘妃子笑’荔枝花期调控效应研究[D]. 海口: 海南大学, 2016. |
HU X Y. Regulation of flower time in ‘Ziniangxi’ and ‘Feizixiao’ Litchi[D]. Haikou: Hainan University, 2016. (in Chinese) | |
[31] | 李同华. 白桦生殖发育中形态解剖学研究和内源激素的动态变化分析[D]. 哈尔滨: 东北林业大学, 2004. |
LI T H. The morphological and anatomic study and analysis on change of endogenous hormones during birch reproductive development[D]. Harbin: Northeast Forestry University, 2004. (in Chinese). | |
[32] | 莫长明, 涂冬萍, 黄杰, 马小军, 潘丽梅, 姚绍嫦, 冯世鑫, 白隆华. 罗汉果花芽分化过程中形态及其激素水平变化特征. 西北植物学报, 2015, 35(1):98-106. |
MO C M, TU D P, HUANG J, MA X J, PAN L M, YAO S C, FENG S X, BAI L H. Morphological and endogenous hormones characteristics of flower budsof Siraitia grosvenoriiduring its differentiation . Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1):98-106. (in Chinese). | |
[33] | 聂丽娜, 夏兰琴, 徐兆师, 高东尧, 李琳, 于卓, 陈明, 李连城, 马有志. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 2008, 9(3):385-391. |
NIE L N, XIA L Q, XU Z S, GAO D Y, LI L, YU Z, CHEN M, LI L C, MA Y Z. Progress on cloning and functional study of plant gene promoters. Journal of Plant Genetic Resources, 2008, 9(3):385-391. (in Chinese) | |
[34] | 侍婷, 张其林, 高志红, 章镇, 庄维兵. 2个果梅品种雌蕊分化进程及相关生化指标分析. 植物资源与环境学报, 2011, 20(4):35-41. |
SHI T, ZHANG Q L, GAO Z H, ZHANG Z, ZHUANG W B. Analyses on pistil differentiation process and related biochemical indexes of two cultivars of Prunus mume . Journal of Plant Resources and Environment, 2011, 20(4):35-41. (in Chinese) | |
[35] |
TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10:71.
doi: 10.1186/1471-2199-10-71 |
[36] |
ZHANG F P, SUSSMILCH F, NICHOLS D S, CARDOSO A A, BRODRIBB T J, MCADAM S A M. Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. Journal of Experimental Botany, 2018, 69(5):1261-1267.
doi: 10.1093/jxb/erx480 |
[37] |
RAHEEM A, SHAPOSHNIKOV A, BELIMOV A A, DODD I C, ALI B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 2018, 64(4):574-587.
doi: 10.1080/03650340.2017.1362105 |
[38] | REDDY K E, LEE W, JEONG J Y, LEE Y, LEE H J, KIM M S, KIM D W, YU D, CHO A, OH Y K, LEE S D. Effects of deoxynivalenol and zearalenone-contaminated feed on the gene expression profles in the kidneys of piglets. Asian-Australasian Journal of Animal Sciences, 2018, 31(1):138-148. |
[39] | 陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23(4):498-500. |
CHEN Y P, YANG W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalifolium by HPLC . Journal of Sichuan Agricultural University, 2005, 23(4):498-500. (in Chinese). | |
[40] | 林绍艳, 张芳, 徐颖洁. 植物中多胺含量超高效液相色谱法的建立. 南京农业大学学报, 2016, 39(3):358-365. |
LIN S Y, ZHANG F, XU Y J. The establishment of UPLC method for measuring polyamines content in plants. Journal of Nanjing Agricultural University, 2016, 39(3):358-365. (in Chinese) | |
[41] |
KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285:245-260.
doi: 10.1007/s00438-011-0602-7 |
[42] |
WU J, WANG F Y, CHENG L, KONG F L, PENG Z, LIU S Y, YU X L, LU G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011, 30(11):2059-2073.
doi: 10.1007/s00299-011-1113-z |
[43] |
ROOSJEN M, PAQUE S, WEIJERS D. Auxin response factors: Output control in auxin biology. Journal of Experimental Botany, 2018, 69(2):179-188.
doi: 10.1093/jxb/erx237 |
[44] | 李艳林, 高志红, 宋娟, 王万许, 侍婷. 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017, 53(10):1842-1858. |
LI Y L, GAO Z H, SONG J, WAGN W X, SHI T. Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017, 53(10):1842-1858. (in Chinese) | |
[45] |
BLA´ZQUEZ MA, GREEN R, NILSSON O, SUSSMAN M R, WEIGEL D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998, 10(5):791-800.
doi: 10.1105/tpc.10.5.791 |
[46] |
WAGNER D, SABLOWSKI R W M, MEYEROWITZ E M. Transcriptional activation of APETALA1 by LEAFY. Science, 1999, 285:582-584.
doi: 10.1126/science.285.5427.582 |
[47] |
BUSCH M A, BOMBLIES K, WEIGEL D. Activation of a flower homeotic gene in Arabidopsis. Science, 1999, 285:585-587.
doi: 10.1126/science.285.5427.585 |
[48] |
LAMB R S, HILL T A, TAN Q K, IRISH V F. Regulation of APETALA3 flower homeotic gene expression by meristem identity genes. Development, 2002, 129:2079-2086.
doi: 10.1242/dev.129.9.2079 |
[49] | WILLIAM D A, SU Y H, SMITH M R, LU M, BALDWIN D A, WAGNER D. Genomic identification of direct target genes of LEAFY. Proceedings of the National Academy of Sciences, 2004, 101:1775-1780. |
[50] | YU H, ITO T, ZHAO Y X, PENG J R, KUMAR P, MEYEROWITZ E M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences, 2004, 101:7827-7832. |
[51] |
ZHANG W Y, ABDELRAHMAN M, JIU S T, GUAN L, HAN J, ZHENG T, JIA H F, SONG C N, FANG J G, WANG C. VvmiR160s/ VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology, 2019, 19:111.
doi: 10.1186/s12870-019-1719-9 |
[1] | 王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能[J]. 中国农业科学, 2023, 56(2): 275-286. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[4] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[5] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[6] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[7] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[8] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[9] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[10] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[11] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[12] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[13] | 束婧婷,姬改革,单艳菊,章明,巨晓军,刘一帆,屠云洁,盛中伟,唐燕飞,蒋华莲,邹剑敏. IGF1-PI3K-Akt信号通路相关基因在黄羽肉鸡肌肉和肝脏中的表达[J]. 中国农业科学, 2021, 54(9): 2027-2038. |
[14] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[15] | 赵乐,杨海丽,李佳璐,杨永恒,张蓉,程文强,成磊,赵永聚. TETs与细胞程序性死亡相关基因在山羊妊娠早期输卵管及子宫角的表达[J]. 中国农业科学, 2021, 54(4): 845-854. |
|