[1] |
王艳朋, 靳静晨, 汤继华, 胡彦民, 刘宗华. 作物氮素高效利用研究与现代农业. 中国农学通报, 2007, 23(10): 179-183.
|
|
WANG Y P, JIN J C, TANG J H, HU Y M, LIU Z H. Research on the high nitrogen use efficiency of crops and modern agriculture. Chinese Agricultural Science Bulletin, 2007, 23(10): 179-183. (in Chinese)
|
[2] |
CHEN F J, FANG Z G, GAO Q, YE Y L, JIA L L, YUAN L X, MI G H, ZHANG F S. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Science China Life Sciences, 2013, 56(6): 552-560.
doi: 10.1007/s11427-013-4462-8
pmid: 23504275
|
[3] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z C, FRENEY J R, MARTINELLI L A, SEITZINGER S P, SUTTON M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.
doi: 10.1126/science.1136674
pmid: 18487183
|
[4] |
ROBSON F, COSTA M M, HEPWORTH S R, VIZIR I, PIÑEIRO M, REEVES P H, PUTTERILL J, COUPLAND G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal, 2001, 28(6): 619-631.
doi: 10.1046/j.1365-313x.2001.01163.x
|
[5] |
LI Y P, XU M L. CCT family genes in cereal crops: a current overview. The Crop Journal, 2017, 5(6): 449-458.
doi: 10.1016/j.cj.2017.07.001
|
[6] |
LIU H Y, ZHOU X C, LI Q P, WANG L, XING Y Z. CCT domain-containing genes in cereal crops: Flowering time and beyond. Theoretical and Applied Genetics, 2020, 133(5): 1385-1396.
doi: 10.1007/s00122-020-03554-8
pmid: 32006055
|
[7] |
HUNG H Y, SHANNON L M, TIAN F, BRADBURY P J, CHEN C, FLINT-GARCIA S A, MCMULLEN M D, WARE D, BUCKLER E S, DOEBLEY J F, HOLLAND J B. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28): E1913-E1921.
|
[8] |
YANG Q, LI Z, LI W Q, KU L X, WANG C, YE J R, LI K, YANG N, LI Y P, ZHONG T, LI J S, CHEN Y H, YAN J B, YANG X H, XU M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16969-16974.
|
[9] |
WANG C, YANG Q, WANG W X, LI Y P, GUO Y L, ZHANG D F, MA X N, SONG W, ZHAO, J R, XU M L. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist, 2017, 215(4): 1503-1515.
doi: 10.1111/nph.2017.215.issue-4
|
[10] |
LI Y P, TONG L X, DENG L L, LIU Q Y, XING Y X, WANG C, LIU B S, YANG X H, XU M L. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theoretical and Applied Genetics, 2017, 130(12): 2587-2600.
doi: 10.1007/s00122-017-2978-1
|
[11] |
XU G H, WANG X F, HUANG C, XU D Y, LI D, TIAN J G, CHEN Q Y, WANG C L, LIANG Y M, WU Y Y. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214(2): 852-864.
doi: 10.1111/nph.14400
pmid: 28067953
|
[12] |
LI B, WANG Z, JIANG H, LUO J H, GUO T, TIAN F, ROSSI V, HE Y. ZmCCT10-relayed photoperiod sensitivity regulates natural variation in the arithmetical formation of male germinal cells in maize. New Phytologist, 2023, 237(2): 585-600.
doi: 10.1111/nph.v237.2
|
[13] |
ZHONG S Y, LIU H Q, LI Y, LIN Z W. Opposite response of maize ZmCCT to photoperiod due to transposon jumping. Theoretical and Applied Genetics, 2021, 134(9): 2841-2855.
doi: 10.1007/s00122-021-03862-7
|
[14] |
TONG L X, YAN M Z, ZHU M, YANG J, LI Y P, XU M L. ZmCCT haplotype H5 improves yield, stalk-rot resistance, and drought to tolerance in maize. Frontiers in Plant Science, 2022, 13: 984527.
doi: 10.3389/fpls.2022.984527
|
[15] |
SU H H, LIANG J C, ABOU-ELWAFA S F, CHENG H Y, DOU D D, REN Z Z, XIE J R, CHEN Z H, GAO, F R, KU L X, CHEN Y H. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biology, 2021, 21(1): 453-467.
doi: 10.1186/s12870-021-03231-y
|
[16] |
ZHANG Z H, ZHANG X, LIN Z L, WANG J, XU M L, LAI J S, YU J, LIN Z W. The genetic architecture of nodal root number in maize. The Plant Journal, 2018, 93(6): 1032-1044.
doi: 10.1111/tpj.13828
pmid: 29364547
|
[17] |
于洋. 不同氮效率玉米对供氮的响应特征及转录组蛋白质组分析[D]. 哈尔滨: 东北农业大学, 2021.
|
|
YU Y. Response characteristics and transcriptome proteome analysis of maize with different nitrogen efficiency to nitrogen supply[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
|
[18] |
储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学: 生命科学, 2021, 51(10): 1415-1423.
|
|
CHU C C, WANG Y, WANG E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Scientia Sinica (Vitae), 2021, 51(10): 1415-1423. (in Chinese)
|
[19] |
MA F F, NI L, LIU L B, LI X, ZHANG H, ZHANG A Y, TAN M P, JIANG, M Y. ZmABA2, an interacting protein of Zm MPK5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnology Journal, 2016, 14(2): 771-782.
doi: 10.1111/pbi.2016.14.issue-2
|
[20] |
YOON Y, SEO D H, SHIN H, KIM H J, KIM C M, JANG G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 2020, 10(6): 788.
doi: 10.3390/agronomy10060788
|
[21] |
ZHANG X Y, JIA H Y, LI T, WU J Z, NAGARAJAN R, LEI L, POWERS C, KAN C C, HUA W, LIU Z Y, CHEN C, CARVER B F, YAN L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183.
doi: 10.1126/science.abm0717
|
[22] |
XUE W Y, XING, Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767.
doi: 10.1038/ng.143
|
[23] |
WENG X Y, WANG L, WANG J, HU Y, DU H, XU C G, XING Y Z, LI X H, XIAO J H, ZHANG Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiology, 2014, 164(2): 735-747.
doi: 10.1104/pp.113.231308
pmid: 24390391
|
[24] |
WANG Q, SU Q, NIAN J, ZHANG J, GUO M, DONG G G, HU J, WANG R S, WEI C S, LI G W, WANG W, GUO H S, LIN S Y, QIAN W F, XIE X Z, QIAN Q, Chen F, ZUO J Z. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023.
doi: 10.1016/j.molp.2021.04.012
|
[25] |
李鹏程. 玉米根系性状的遗传分析及其与氮效率的关系研究[D]. 北京: 中国农业大学, 2015.
|
|
LI P C. Genetic analysis of root traits and the relationship with nitrogen use efficiency in maize (Zea mays L.)[D]. Beijing: China Agricultural University, 2015. (in Chinese)
|
[26] |
HAWKESFORD M J, GRIFFITHS S. Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Current Opinion in Plant Biology, 2019, 49: 35-42.
doi: S1369-5266(18)30115-8
pmid: 31176099
|
[27] |
赵志鑫. 陕A群、陕B群选育玉米自交系耐低氮特性评价[D]. 西安: 西北农林科技大学, 2020.
|
|
ZHAO Z X. Evaluation of low nitrogen tolerance for maize inbred lines selected Shaan A and Shaan B groups[D]. Xi’an: Northwest A&F University, 2020. (in Chinese)
|
[28] |
陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. 玉米科学, 2003, 11(2): 78-82.
|
|
CHEN F J, MI G H, ZHANG F S, WANG Y, LIU X S, CHUN L. Nitrogen use efficiency in some of main maize hybrids grown in North China. Journal of Maize Sciences, 2003, 11(2): 78-82. (in Chinese)
|
[29] |
吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征. 作物学报, 2021, 47(5): 915-928.
doi: 10.3724/SP.J.1006.2021.03033
|
|
WU Y W, PU W, ZHAO B, WEI G, KONG F L, YUAN J C. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance. Acta Agronomica Sinica, 2021, 47(5): 915-928. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03033
|
[30] |
FIXEN P, BRENTRUP F, BRUULSEMA T, GARCIA F, NORTON R, ZINGORE S. Nutrient/ fertilizer use efficiency: measurement, current situation and trends. Managing Water and Fertilizer for Sustainable Agricultural Intensification, 2015, 270: 8-38.
|
[31] |
崔文芳, 高聚林, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷. 氮高效玉米自交系的筛选指标及其子粒氮素营养特性分析. 植物营养与肥料学报, 2014, 20(2): 290-297.
|
|
CUI W F, GAO J L, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. The index for the screening of N-efficient inbred lines of maize and their N nutrition peculiarity in seed production. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 290-297. (in Chinese)
|
[32] |
米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23(6): 1525-1535.
|
|
MI G H. Nutrient use efficiency in crops and its genetic improvement. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1525-1535. (in Chinese)
|