[1] |
范成明, 田建华, 胡赞民, 王珏, 吕慧颖, 葛毅强, 魏珣, 邓向东, 张蕾颖, 杨维才 . 油菜育种行业创新动态与发展趋势. 植物遗传资源学报, 2018,19(3):447-454.
|
|
FAN C M, TIAN J H, HU Z M, WANG J, LÜ H Y, GE Y Q, WEI X, DENG X D, ZHANG L Y, YANG W C . Advances of oilseed rape breeding. Journal of Plant Genetic Resources, 2018,19(3):447-454. (in Chinese)
|
[2] |
OGURA H . Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture, Kagoshima University, 1968,6(2):39-78.
|
[3] |
CHARNE D G, GRANT I, KRALING K, PATEL J D, PRUVOT J C, TULSIERAM L K . Oilseed Brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility. 2002, US, US6392127.
|
[4] |
FU T D, YANG G S, YANG X N . Studies on three line Polima cytoplasmic male sterility developed in B. napus. Plant Breeding, 1990,104:115-120.
|
[5] |
杨光圣, 傅廷栋 . 甘蓝型油菜雄性不育-可育两用系选育成功. 中国农业科学, 1990(1):90.
|
|
YANG G S, FU T D . Success in the breeding of male sterile and fertile lines inBrassica Napus L. Scientia Agricultura Sinica, 1990(1):90. (in Chinese)
|
[6] |
杨光圣, 傅廷栋, 杨小牛, 马朝芝 . 甘蓝型油菜生态雄性不育两用系的研究: I. 雄性不育两用系的遗传. 作物学报, 1995,21(2):129-135.
|
|
YANG G S, FU T D, YANG X N, MA C Z . Studies on the ecotypical male sterile line of Brassica napus L.: I. Heritance of the ecotypical male sterile line. Acta Agronomic Sinica, 1995,21(2):129-135. (in Chinese)
|
[7] |
杨光圣, 傅廷栋, 马朝芝, 杨小牛 . 甘蓝型油菜生态雄性不育两用系的研究: II. 环境条件对雄性不育两用系的影响. 华中农业大学学报, 1997,16(5):330-334.
|
|
YANG G S, FU T D, MA C Z, YANG X N . Studies on the ecotypical male sterile line of Brassica napus L.: II. The influence of environment on the ecotypical male sterility. Journal of Huazhong Agricultural University, 1997,16(5):330-334. (in Chinese)
|
[8] |
袁美, 杨光圣, 傅廷栋, 严红艳 . 甘蓝型油菜生态型细胞质雄性不育两用系的研究: III. 8-8112AB的温度敏感性及其遗传. 作物学报, 2003,29(3):330-335.
|
|
YUAN M, YANG G S, FU T D, YAN H Y . Studies on the ecotypical male sterile-fertile line of Brassica napus L.: III. Sensitivity to temperature of 8-8112AB and its inheritance. Acta Agronomic Sinica, 2003,29(3):330-335. (in Chinese)
|
[9] |
LIU Z, YANG Z H, WANG X, LI K D, AN H, LIU J, YANG G S, FU T D, YI B, HONG D F . A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Molecular Plant, 2016,9(7):1082-1084.
doi: 10.1016/j.molp.2016.04.004
|
[10] |
YI B, ZENG F Q, LEI S L, CHEN Y, YAO X Q, ZHU Y, WEN J, SHEN J X, MA C Z, TU J X, FU T D . Two duplicate CYP704B1- homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. The Plant Journal, 2010,63(6):925-938.
|
[11] |
陈凤祥, 胡宝成, 李强生, 张曼琳 . 甘蓝型油菜细胞核不育材料9012A的发现与初步研究. 北京农业大学学报, 1993,19(增刊):57-61.
|
|
CHEN F X, HU B C, LI Q S, ZHANG M L . Discovery and study of genic male sterility (GMS) material 9012A in Brassica napus L. Acta Agricultural University Pekinensis, 1993,19(Suppl.):57-61. (in Chinese)
|
[12] |
李树林, 钱玉秀, 吴志华 . 甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用. 上海农业学报, 1985,1(2):1-12.
|
|
LI S L, QIAN Y X, WU Z H . Inheritance of genic male sterility in Brassica napus and its application to commercial production. Acta Agriculturae Shanghai, 1985,1(2):1-12. (in Chinese)
|
[13] |
MARIANI C, DE BEUCKELEER M, TRUETTNER J, LEEMANS J, GOLDBERG R B . Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990,347(6295):737.
|
[14] |
陈凤祥, 胡宝成, 李成, 李强生, 陈维生, 张曼琳 . 甘蓝型油菜细胞核雄性不育性的遗传研究: I隐性核不育系9012A的遗传. 作物学报, 1998,24(4):431-438.
|
|
CHEN F X, HU B C, LI C, LI Q S, CHEN W S, ZHANG M L . Genetic studies on GMS in Brassica napus L.: I. Inheritance of recessive GMS line 9012A. Acta Agronomic Sinica, 1998,24:431-438. (in Chinese)
|
[15] |
董发明, 洪登峰, 刘平武, 谢彦周, 何庆彪, 杨光圣 . 甘蓝型油菜隐性细胞核雄性不育系9012AB遗传模式新释. 华中农业大学学报, 2010,29(3):262-267.
doi: 1000-2421(2010)03-0262-06
|
|
DONG F M, HONG D F, LIU P W, XIE Y Z, HE Q B, YANG G S . A novel genetic model for the recessive genic male sterility line 9012AB in rapeseed ( Brassica napus L.). Journal of Huazhong Agricultural University, 2010,29(3):262-267. (in Chinese)
doi: 1000-2421(2010)03-0262-06
|
[16] |
DONG F M, HONG D F, XIE Y Z, WEN Y P, DONG L, LIU P W, HE Q B, YANG G S . Molecular validation of a multiple-allele recessive genic male sterility locus (BnRf) in Brassica napus L. Molecular Breeding, 2012,30(2):1193-1205.
|
[17] |
DENG Z H, LI X, WANG Z Z, JIANG Y F, WAN L L, DONG F M, CHEN F X, HONG D F, YANG G S . Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRf(b), a male sterility gene, in Brassica napus. Theoretical and Applied Genetics, 2016,129(1):53-64.
|
[18] |
DUN X L, ZHOU Z F, XIA S Q, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D . BnaC. Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 2011,68(3):532-545.
|
[19] |
LI J, HONG D F, HE J P, MA L, WAN L L, LIU P W, YANG G S . Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theoretical and Applied Genetics, 2012,125(2):223-234.
|
[20] |
XIA S Q, WANG Z X, ZHANG H Y, HU K N, ZHANG Z Q, QIN M M, DUN X L, YI B, WEN J, MA C Z, SHEN J X, FU T D, TU J X . Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. The Plant Cell, 2016,28(9):2060-2078.
|
[21] |
ZHAO L, JING X, CHEN L, LIU Y J, SU Y N, LIU T T, GAO C B, YI B, WEN J, MA C Z, TU J X, ZOU J T, FU T D, SHEN J X . Tribenuron-Methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Molecular Plant, 2015,8(12):1710-1724.
doi: 10.1016/j.molp.2015.08.009
|
[22] |
ZHAO L, DENG L, ZHANG Q, JING X, MA M, YI B, WEN J, MA C Z, TU J X, FU T D, SHEN J X . Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018,14(4):702-714.
doi: 10.1080/15548627.2017.1407888
|
[23] |
KITASHIBA H, NASRALLAH J B . Self-incompatibility in Brassicaceae crops: Lessons for interspecific incompatibility. Breeding Science, 2014,64(1):23-37.
doi: 10.1270/jsbbs.64.23
|
[24] |
NASRALLAH J B, NASRALLAH M E . Pollen-stigma signaling in the sporophytic self-incompatibility response. The Plant Cell, 1993,5(10):1325-1335.
|
[25] |
马朝芝, 傅廷栋, 杨光圣, 涂金星, 杨小牛, 但芳 . 甘蓝型油菜双低自交不亲和系的选育. 华中农业大学学报, 1998,17(3):211-213.
|
|
MA C Z, FU T D, YANG G S, TU J X, YANG X N, DAN F . Breeding for self-incompatibility lines with double zero on Brassica napus L. Journal of Huazhong Agricultural University, 1998,17(3):211-213. (in Chinese)
|
[26] |
ZHAI W, ZHANG J F, YANG Y, MA C Z, LIU Z Q, GAO C B, ZHOU G L, TU J X, SHEN J X, FU T D . Gene expression and genetic analysis reveal diverse causes of recessive self-compatibility in Brassica napus L. BMC Genomics, 2014,15(1):1037.
|
[27] |
GAO C B, MA C Z, ZHANG X G, LI F P, ZHANG J F, ZHAI W, WANG Y Y, TU J X, SHEN J X, FU T D . The genetic characterization of self-incompatibility in a Brassica napus line with promising breeding potential. Molecular Breeding, 2013,31(2):485-493.
|
[28] |
GAO C B, ZHOU G L, MA C Z, ZHAI W, ZHANG T, LIU Z Q, YANG Y, WU M, YUE Y, DUAN Z Q, LI Y Y, LI B, LI J J, SHEN J X, TU J X, FU T D . Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L. Scientific Reports, 2016,6(5):337-355.
|
[29] |
TANG J Y, ZHANG J F, MA C Z, TANG W, GAO C B, LI F P, WANG X, LIU Y, FU T D . CAPS and SCAR markers linked to maintenance of self-incompatibility developed from SP11 in Brassica napus L. Molecular Breeding, 2009,24(3):245-254.
|
[30] |
ZHANG X G, MA C Z, FU T D, LI Y Y, WANG T H, CHEN Q, TU J X, SHEN J X . Development of SCAR markers linked to self-incompatibility in Brassica napus L. Molecular Breeding, 2007,21(3):305-315.
|
[31] |
ZHANG X G, MA C Z, TANG J Y, TANG W, TU J X, SHEN J X, FU T D . Distribution of S haplotypes and its relationship with restorer-maintainers of self-incompatibility in cultivatedBrassica napus. Theoretical and Applied Genetics, 2008,117(2):171-179.
|