中国农业科学 ›› 2021, Vol. 54 ›› Issue (15): 3198-3206.doi: 10.3864/j.issn.0578-1752.2021.15.005
收稿日期:
2020-10-12
接受日期:
2020-11-30
出版日期:
2021-08-01
发布日期:
2021-08-10
通讯作者:
陆志峰
作者简介:
王鲲娇,E-mail: 基金资助:
WANG KunJiao(),REN Tao,LU ZhiFeng(
),LU JianWei
Received:
2020-10-12
Accepted:
2020-11-30
Online:
2021-08-01
Published:
2021-08-10
Contact:
ZhiFeng LU
摘要:
【目的】 阐明不同的镁供应对油菜生长的影响,为油菜科学施用镁肥提供理论依据。【方法】 通过水培试验设置了12个镁供应浓度,对比不同供镁浓度对油菜苗期生长、养分积累、光合特性、同化物运输及离子平衡等的影响,分析适宜油菜生长的镁临界浓度。【结果】 随着镁供应浓度的增加,油菜地上部生物量呈现先增加后降低的趋势,当供镁浓度在1.0 mmol·L-1时,地上部生物量最大,以最大生物量的95%为标准,确定了水培条件下,满足油菜苗期生长的适宜地上部镁含量为0.4%—0.7%。适宜的镁营养供应可以促进油菜地上部和根系的生长;供镁不足显著降低了叶片净光合速率、Rubisco酶活性、表观光合电子传递速率和最大羧化速率等生理功能,抑制叶片糖类物质的转运和植株生长;供镁浓度过高会破坏钾、钙与镁离子平衡,显著降低叶片钾含量和钙含量,进而限制油菜的生长。【结论】 适宜的镁营养能增加叶片同化物的合成、促进光合产物的运输与分配、保障离子平衡,进而促进油菜的生长,这对保障油菜产量具有重要意义。
王鲲娇,任涛,陆志峰,鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响[J]. 中国农业科学, 2021, 54(15): 3198-3206.
WANG KunJiao,REN Tao,LU ZhiFeng,LU JianWei. Effects of Different Magnesium Supplies on the Growth and Physiological Characteristics of Oilseed Rape in Seeding Stage[J]. Scientia Agricultura Sinica, 2021, 54(15): 3198-3206.
表1
不同地上部镁营养对油菜苗期地上部钾与钙浓度的影响"
植株部位 Each part of the plant | 镁缺乏 Mg lack | 镁适宜 Mg optimum | 镁过量 Mg excess | |
---|---|---|---|---|
地上部 Shoot | 镁浓度 Mgc (%) | 0.08±0.01c | 0.58±0.01b | 0.82±0.03a |
钙浓度 Cac (%) | 3.38±0.49a | 2.94±0.47b | 2.63±0.53c | |
钾浓度 Kc (%) | 4.61±0.80a | 5.48±0.99a | 5.00±0.77a | |
新叶 NL | 镁浓度 Mgc (%) | 0.10±0.01c | 0.55±0.03b | 0.78±0.07a |
钙浓度 Cac (%) | 3.14±0.16a | 2.52±0.08b | 2.51±0.05b | |
钾浓度 Kc (%) | 5.56±0.28a | 5.08±0.04b | 4.47±0.24c | |
老叶 OL | 镁浓度 Mgc (%) | 0.06±0.01c | 0.66±0.04b | 0.97±0.07a |
钙浓度 Cac (%) | 3.44±0.17b | 5.04±0.16a | 3.33±0.02b | |
钾浓度 Kc (%) | 4.32±0.25c | 7.74±0.28a | 6.22±0.36b |
表2
镁对油菜苗期根系与地上部表型特征的影响"
表型特征 Phenotype | 镁缺乏 Mg lack 0.10 | 镁适宜 Mg optimum 1.00 |
---|---|---|
根生物量 BMroot (g/plant) | 0.11±0.01b | 0.33±0.05a |
根平均直径 Root avgdiam (mm) | 0.58±0.04b | 0.78±0.10a |
根长 Root length (cm) | 877±121b | 1121±169a |
根尖数 Root tips | 627±92b | 948±177a |
叶面积 LA (cm2) | 504±7b | 842±12a |
地上部生物量 BMshoot (g/plant) | 1.51±0.05b | 2.19±0.07a |
表3
镁对油菜苗期各叶位叶片表型特征的影响"
供镁浓度 Magnesium supplies concentration (mmol·L-1) | 表型 Phenotype | 叶位Leaf position | ||||||
---|---|---|---|---|---|---|---|---|
1 (下lower) | 2 | 3 | 4 | 5 | 6 | 7 (上upper) | ||
缺乏Lack 0.10 | 镁浓度 Mgc (%) | 0.13±0.01* | 0.16±0.01* | 0.16±0.01* | 0.24±0.01* | 0.28±0.02* | 0.33±0.04* | — |
叶面积 LA (cm2) | 51±5* | 87±3* | 91±4* | 104±4* | 104±5* | 66±5* | — | |
叶片生物量 BMleaf (g DW/plant) | 0.26±0.03 | 0.28±0.01* | 0.30±0.02* | 0.29±0.02* | 0.25±0.02* | 0.14±0.01* | — | |
比叶重 LMA (mg·cm-2) | 2.8±0.4* | 2.9±0.3* | 3.2±0.3* | 2.8±0.1 | 2.7±0.1 | 3.9±0.3 | — | |
淀粉浓度 Starchc (%) | 4.1±0.2* | 7.9±0.3* | 8.2±0.1* | 5.3±0.2* | 4.7±0.2* | 3.3±0.0* | — | |
蔗糖浓度 Sugarc (%) | 6.1±0.3* | 5.1±0.3* | 4.7±0.1* | 3.2±0.1* | 2.4±0.1* | 3.3±0.1* | — | |
适宜Optimum 1.00 | 镁浓度 Mgc (%) | 1.30±0.03 | 1.35±0.05 | 1.27±0.09 | 0.98±0.03 | 1.08±0.04 | 1.07±0.04 | 0.93±0.03 |
叶面积 LA (cm2) | 113±12 | 155±4 | 160±4 | 139±5 | 126±4 | 93±4 | 56±2 | |
叶片生物量 BMleaf (g DW/plant) | 0.27±0.01 | 0.32±0.01 | 0.38±0.01 | 0.42±0.03 | 0.33±0.02 | 0.30±0.02 | 0.17±0.02 | |
比叶重 LMA (mg·cm-2) | 1.5±0.2 | 1.9±0.1 | 2.1±0.2 | 3.1±0.3 | 3.0±0.2 | 3.5±0.1 | 4.9±0.3 | |
淀粉浓度 Starchc (%) | 1.5±0.0 | 2.2±0.1 | 1.9±0.0 | 2.5±0.1 | 2.7±0.1 | 3.0±0.1 | 2.1±0.1 | |
蔗糖浓度 Sugarc (%) | 3.3±0.1 | 1.8±0.2 | 3.2±0.0 | 7.4±0.1 | 4.5±0.1 | 6.4±0.1 | 11.5±0.6 |
表4
镁对油菜苗期叶片生理生化指标的影响"
生理生化指标 Physiological and biochemical indexes | 上层叶片 Upper leaf | 下层叶片 Lower leaf | ||
---|---|---|---|---|
镁缺乏 Mg lack | 镁适宜Mg optimum | 镁缺乏 Mg lack | 镁适宜Mg optimum | |
净光合速率 A (μmol·m-2·s-1) | 12.2±1.3b | 16.4±1.4a | 6.8±1.1b | 16.6±1.8a |
气孔导度 gs | 0.14±0.02a | 0.13±0.02a | 0.08±0.03b | 0.17±0.02a |
胞间CO2浓度 Ci | 246±8a | 189±12b | 285±11a | 248±8b |
叶绿素a含量 Chl a (mg·g-1 FW) | 0.10±0.01b | 0.76±0.06a | 0.09±0.01b | 0.49±0.04a |
叶绿素b含量 Chl b (mg·g-1 FW) | 0.10±0.01b | 0.36±0.03a | 0.07±0.01b | 0.18±0.02a |
叶绿素含量 Chl a+b (mg·g-1 FW) | 0.20±0.01b | 1.12±0.08a | 0.16±0.02b | 0.67±0.05a |
实际光化学量子效率 ΦPSII | 0.24±0.02b | 0.29±0.02a | 0.17±0.02b | 0.24±0.02a |
表观光合电子传递速率 ETR | 122±9b | 147±9a | 85±9b | 123±12a |
Rubisco酶活性 Rubisco activity (U·g-1 FW) | 228±10b | 908±23a | 99±6b | 298±5a |
最大羧化效率 Vcmax | 19.66±2.84b | 33.03±1.38a | 16.20±2.37b | 35.76±2.33a |
最大电子传递速率 Jmax | 18.27±2.72b | 41.45±0.96a | 16.01±2.20b | 38.84±3.43a |
[1] |
GERENDAS J, FUEHRS H. The significance of magnesium for crop quality. Plant Soil, 2013, 368(1/2):101-128.
doi: 10.1007/s11104-012-1555-2 |
[2] |
SENBAYRAM M, GRANSEE A, WAHLE V, THIEL H. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop and Pasture Science, 2015, 66(12):1219-1229.
doi: 10.1071/CP15104 |
[3] | 王瑞元. 发展木本油料产业是提高我国食用油自给率的重要举措. 粮食与食品工业, 2016, 23(4):1-4. |
WANG R Y. The development of woody oil industry is an important measure to increase the self-sufficiency rate of edible oil in my country. Cereal and Food Industry, 2016, 23(4):1-4. (in Chinese) | |
[4] | 王汉中. 我国食用油供给安全形势分析与对策建议. 中国油料作物学报, 2007, 29(3):347-349. |
WANG H Z. Analysis and strategy for current domestic edible oil supply. Chinese Journal of Oil Crop Sciences, 2007, 29(3):347-349. (in Chinese) | |
[5] | 鲁剑巍. 中国油菜生产的高产高效氮素管理. 中国农业科学, 2016, 49(18):3504-3505. |
LU J W. Nitrogen management with high yield and high efficiency for oilseed rape in China. Scientia Agricultura Sinica, 2016, 49(18):3504-3505. (in Chinese) | |
[6] | 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1):1-8. |
SHEN J X, FU T D. Rapeseed production, improvement and edible oil supply in China. Journal of Agricultural Science and Technology, 2011, 13(1):1-8. (in Chinese) | |
[7] | 白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004(2):3-5. |
BAI Y L, JIN J Y, YANG L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils and Fertilizers, 2004(2):3-5. (in Chinese) | |
[8] | 李小芳, 李倩, 雷利琴, 田贵生, 鲁剑巍. 高钾地力下不同镁肥用量对油菜产量和品质的影响. 湖南农业科学, 2018(8):48-50. |
LI X F, LI Q, LEI L Q, TIAN G S, LU J W. Effects of magnesium application rates on yield and quality of rapeseed under high potassium soil fertility. Hunan Agricultural Sciences, 2018(8):48-50. (in Chinese) | |
[9] | 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8):1606-1616. |
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8):1606-1616. (in Chinese) | |
[10] | 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28(3):295-299. |
ZOU J, LU J W, WU J S, LI Y S. Dynamics of calcium, magnesium and sulfur uptake in 4 double-low rapeseed (Brassica napus L.) varieties. Journal of Huazhong Agricultural University, 2009, 28(3):295-299. (in Chinese) | |
[11] | 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料学报, 2012, 34(6):638-644. |
LIU X W, LU J W, LI X K, BU R Y, LIU B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chinese Journal of Oil Crop Sciences, 2012, 34(6):638-644. (in Chinese) | |
[12] |
CAKMAK I. Magnesium in crop production, food quality and human health. Plant Soil, 2013, 368(1):1-4.
doi: 10.1007/s11104-013-1781-2 |
[13] | 邹邦基, 何雪晖. 植物的营养. 北京: 农业出版社, 1985. |
ZOU B J, HE X H. Plant Nutrition. Beijing: Agricultural Press, 1985. (in Chinese) | |
[14] | 袁可能. 植物营养元素的土壤化学. 北京: 科学出版社, 1983. |
YUAN K N. Soil Chemistry of Plant Nutrient Elements. Beijing: Science Press, 1983. (in Chinese) | |
[15] | 郑圣先, 罗成秀, 戴平安, 李明德, 都德. 钾镁相互作用对油菜产量和养分吸收的影响. 湖南农业科学, 1989(2):29-32. |
ZHENG S X, LUO C X, DAI P A, LI M D, DU D. Effect of potassium and magnesium interaction on rape yield and nutrient absorption. Hunan Agricultural Sciences, 1989(2):29-32. (in Chinese) | |
[16] | 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese) | |
[17] |
FARQUHAR G D, CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1):78-90.
doi: 10.1007/BF00386231 |
[18] | 潘瑞炽. 植物生理学. 第5版. 北京: 高等教育出版社, 2004. |
PAN R Z. Plant Physiology.5th ed. Beijing: Higher Education Press, 2004. (in Chinese) | |
[19] | 鲁剑巍. 油菜常见缺素症状图谱及矫正技术. 北京: 中国农业出版社, 2010. |
LU J W. Atlas of Common Nutrient Deficiency Symptoms in Rapeseed and Correction Techniques. Beijing: China Agriculture Press, 2010. (in Chinese) | |
[20] | 陆景陵. 植物营养学. 第二版, 上. 北京: 中国农业大学出版社, 2003. |
LU J L. Plant Nutrition. 2nd ed, part one. Beijing: China Agricultural University Press, 2003. (in Chinese) | |
[21] |
MARSCHNER H, KIRKBY E A, CAKMAK I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 1996, 47(Special):1255-1263.
doi: 10.1093/jxb/47.Special_Issue.1255 |
[22] |
CAKMAK I, KIRKBY E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 2010, 133(4):692-704.
doi: 10.1111/ppl.2008.133.issue-4 |
[23] |
FARHAT N, ELKHOUNI A, ZORRIG W, SMAOUI A, ABDELLY C, RABHI M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologia Plantarum, 2016, 38(6):45.
doi: 10.1007/s11738-015-2044-z |
[24] |
HERMANS C, MARTIN B, JOHN H, PHILIP W, NATHALIE V. How do plants respond to nutrient shortage by biomass allocation. Trends in Plant Science, 2006, 11(12):610-617.
doi: 10.1016/j.tplants.2006.10.007 |
[25] |
HERMANS C, VUYLSTEKE M, COPPENS F, CRISTESCU S, HARREN F J, INZE D. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist, 2010, 187(1):132-144.
doi: 10.1111/nph.2010.187.issue-1 |
[26] |
HAUER-JAKLI M, TRNKNER M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Frontiers in Plant Science, 2019, 10:766.
doi: 10.3389/fpls.2019.00766 |
[27] |
VERBRUGGEN N, HERMANS C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil, 2013, 368(1/2):87-99.
doi: 10.1007/s11104-013-1589-0 |
[28] | 汪洪, 褚天铎. 植物镁素营养的研究进展. 植物学通报, 1999, 16(3):245-250. |
WANG H, ZHE T D. The progress of study on magnesium nutrition in plants. Chinese Bulletin of Botany, 1999, 16(3):245-250. (in Chinese) | |
[29] |
TRANKNER M, TAVAKOL E, JAKLI B. Functional of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018, 163(3):414-431.
doi: 10.1111/ppl.2018.163.issue-3 |
[30] |
HUBER S C, MAURY W. Effects of magnesium on intact chloroplasts. Plant Physiology, 1980, 65(2):350-354.
doi: 10.1104/pp.65.2.350 |
[31] | 杨勇, 蒋德安, 孙骏威, 黄宗安, 金松恒. 不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响. 植物营养与肥料学报, 2005, 11(1):79-86. |
YANG Y, JIANG D A, SUN J W, HUANG Z A, JIN S H. Effects of different magnesium nutrition levels on chlorophyll fluorescence characteristics and excitation energy dissipation in rice leaves. Plant Nutrition and Fertilizer Science, 2005, 11(1):79-86. (in Chinese) | |
[32] | 李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究, 2011, 25(4):405-409. |
LI F Y, HE J G, GUAN C Y. Research progress on photosynthesis of rape leaves and siliques. Crop Research, 2011, 25(4):405-409. (in Chinese) | |
[33] |
SATO T, SHIMODA Y, MATSUDA K, TANAKA A, ITO H. Mg-dechelation of chlorophyll a by stay-green activities chlorophyll b degradation through expressing non-yellow coloring 1 in Arabidopsis thaliana. Journal of Plant Physiology, 2018, 222:94-102.
doi: 10.1016/j.jplph.2018.01.010 |
[34] | 李伏生. 广西主要母质土壤交换性镁含量和影响玉米对镁吸收的因素. 广西农业科学, 1997(3):128-131. |
LI F S. Exchange of exchangeable magnesium content of main parent material soil in Guangxi and influencing factors of magnesium absorption by maize. Guangxi Agricultural Sciences, 1997(3):128-131. (in Chinese) | |
[35] | 沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998. |
SHEN S M. China Soil Fertility. Beijing: China Agriculture Press, 1998. (in Chinese) | |
[36] | 刘世亮, 刘芳, 介晓磊, 雷广海, 化党领. 不同浓度镁营养液对烟草矿质营养吸收与积累的影响. 土壤通报, 2010, 41(1) :155-159. |
LIU S L, LIU F, JIE X L, LEI G H, HUA D L. Effect of Mg2+concentrations on absorption and accumulation of mineral nutrients in tobacco. Chinese Journal of Soil Science, 2010, 41(1):155-159. (in Chinese) | |
[37] |
BALIGAR V C. Absorption kinetics Ca, Mg, Na and P by intact corn and onion roots. Journal of Plant Nutrition, 1985, 8(6):543-554.
doi: 10.1080/01904168509363366 |
[38] | 杨竹青. 钙镁肥对番茄产量品质和养分吸收的影响. 土壤肥料, 1994(2):14-18. |
YANG Z Q. Effect of calcium and magnesium fertilizer on tomato yield, quality and nutrient absorption. Soils and Fertilizers, 1994(2):14-18. (in Chinese) | |
[39] |
HORIE T, BRODSKY D E, COSTA A, KANEKO T F, LO S, KATSUHARA M, SCHROEDER J I. K+ transport by the OsHKT2; 4 transporter from rice with a typical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology, 2011, 156(3):1493-1507.
doi: 10.1104/pp.110.168047 |
[40] |
HARIADI Y, SHABALA S. Screening broad beans (Vicia faba) for magnesium deficiency. I. growth characteristics, visual deficiency symptoms and plant nutritional status. Functional Plant Biology, 2004, 31(5):529-537.
doi: 10.1071/FP03201 |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[3] | 杨滨娟,李萍,胡启良,黄国勤. 紫云英与油菜混播对稻田土壤N2O排放及相关功能基因丰度的影响[J]. 中国农业科学, 2022, 55(4): 743-754. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[6] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[7] | 王梦琪,米娜,王靖,张玉书,纪瑞鹏,陈妮娜,刘霞霞,韩颖,李王轶朴,张佳莹. 干旱胁迫下春玉米冠层吐丝动态及籽粒数模拟研究[J]. 中国农业科学, 2022, 55(18): 3530-3542. |
[8] | 白非,白桂萍,王春云,李真,龚德平,黄威,程雨贵,汪波,王晶,徐正华,蒯婕,周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响[J]. 中国农业科学, 2022, 55(14): 2726-2739. |
[9] | 李正刚,汤亚飞,佘小漫,于琳,蓝国兵,何自福. 侵染萝卜的油菜花叶病毒广东分离物分子特征及其致病性分析[J]. 中国农业科学, 2022, 55(14): 2752-2761. |
[10] | 李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素[J]. 中国农业科学, 2022, 55(1): 96-110. |
[11] | 袁圆,汪波,周广生,刘芳,黄俊生,蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响[J]. 中国农业科学, 2021, 54(8): 1613-1626. |
[12] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[13] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
[14] | 陶海玉,张爱武,庞海洋,康孝岩. 智能手机原位牧草生物量估算[J]. 中国农业科学, 2021, 54(5): 933-944. |
[15] | 张鹏霞,周秀文,梁雪,郭营,赵岩,李斯深,孔凡美. 小麦苗期生物量及氮效率相关性状的全基因组关联分析[J]. 中国农业科学, 2021, 54(21): 4487-4499. |
|