中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 184-196.doi: 10.3864/j.issn.0578-1752.2022.01.015
杜宇1,2(),王永1,孟庆勇3,朱江江1,林亚秋1,2()
收稿日期:
2020-11-10
接受日期:
2021-10-31
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
林亚秋
作者简介:
杜宇,E-mail: 基金资助:
DU Yu1,2(),WANG Yong1,MENG QingYong3,ZHU JiangJiang1,LIN YaQiu1,2()
Received:
2020-11-10
Accepted:
2021-10-31
Online:
2022-01-01
Published:
2022-01-07
Contact:
YaQiu LIN
摘要:
【背景】脂肪组织分为皮肤下的皮下脂肪组织(subcutaneous adipose tissue,SAT)和腹部内器官周围的内脏脂肪组织(visceral adipose tissue,VAT),皮下脂肪作为影响肉类美味与否的重要因素,探究皮下脂肪沉积分子调控机制对于育种改良和畜牧业的发展至关重要。Krüppel-like factors 12 (KLF12)是一个进化保守的转录因子,可以在多种细胞类型中表达并控制着广泛的细胞过程。【目的】研究获得山羊KLF12的分子特征并进行生物信息学分析,同时明确KLF12在山羊组织和细胞中的表达模式以及干扰KLF12对山羊皮下脂肪细胞分化的调控作用,为进一步研究KLF12在脂肪沉积过程中的潜在作用提供理论依据。【方法】利用逆转录PCR(reverse transcription PCR,RT-PCR)方法克隆山羊KLF12完整编码序列(coding sequence,CDS)区,使用在线生物信息学分析软件对山羊KLF12核苷酸序列和氨基酸序列进行分析。利用实时荧光定量PCR(Quantitative Real-time PCR,qRT-PCR)技术检测KLF12在山羊心脏、肝脏、腹部脂肪、皮下脂肪、臂三头肌、背最长肌等14个组织中的表达水平,以及诱导分化不同时间段KLF12在皮下前体脂肪细胞中的表达水平。随后,试验通过化学合成山羊KLF12小干扰RNA(si-KLF12),使用Lipofectamine RNAiMAX转染试剂将山羊si-KLF12序列转染到体外培养的山羊皮下前体脂肪细胞中。使用100 µmol·L-1油酸导液诱导脂肪细胞分化。利用油红O以及Bodipy染色方法和qRT-PCR技术分别从形态学以及分子生物学的角度阐明干扰KLF12对皮下前体脂肪细胞脂滴积聚和脂肪分化标志基因mRNA表达水平的影响。【结果】试验成功获得包含开放阅读框(open reading frame,ORF)(1 209 bp)的山羊KLF12(1 315 bp,编码402个氨基酸)。亚细胞定位结果显示KLF12主要位于细胞核,此外,KLF12无跨膜结构域和信号肽,且在317—341、347—371及377—399氨基酸处存在3个典型的锌指结构域(ZnF_C2H2)。组织表达谱结果显示KLF12在山羊心脏和脾脏的表达水平极显著高于其他组织(P<0.01)。此外,在山羊皮下前体脂肪细胞分化过程中KLF12表达水平在诱导分化60 h时达到峰值。于山羊皮下前体脂肪细胞中转染si-KLF12后利用油红O以及Bodipy染色法从形态学观察发现脂肪细胞脂滴聚积明显增加,同时qRT-PCR结果显示,脂肪分化标志基因脂蛋白脂肪酶(lipoprteinlipase,LPL)和过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)的表达水平显著升高(P<0.05)而前脂肪细胞生长因子(preadipocyte factor 1,Pref-1)的表达水平极显著降低(P<0.01)。结合形态学观察结果以及脂肪分化标志基因表达水平变化情况,推测KLF12在皮下脂肪细胞分化过程中起到负调控作用。【结论】通过对山羊KLF12的分子生物学特征、组织细胞间的表达规律以及对山羊皮下脂肪细胞分化过程的潜在调控作用的研究表明,KLF12是山羊皮下脂肪细胞分化过程中的负调控因子,并且这种作用可能是通过调控LPL、PPARγ和Pref-1实现的,为进一步探究KLF12在调控脂肪细胞分化过程中的分子机制奠定了基础。
杜宇,王永,孟庆勇,朱江江,林亚秋. 干扰山羊KLF12促进皮下脂肪细胞分化[J]. 中国农业科学, 2022, 55(1): 184-196.
DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation[J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
表1
引物信息"
名称 Name | 引物序列5°至3° Primer Sequence | 退火温度 Tm (℃) | 产物长度 Products length (bp) | 用途 Purpose | 登录号 miRbase ID |
---|---|---|---|---|---|
KLF12 | S: TTAGCGCATCATGTGATCCG A: TGGGGTGCCGCTAAGAGAT | 58 | 1315 | RT-PCR | XM_005687692.2 |
KLF12 | S: TCTAAGGTCACATTTGGCAGGTC A: CCAATCGGTGCCTGTTGTCTAC | 61 | 183 | qRT-PCR | KX247669.1 |
UXT | S: GCAAGTGGATTTGGGCTGTAAC A: ATGGAGTCCTTGGTGAGGTTGT | 60 | 180 | qRT-PCR | XP_005700899.1 |
表2
引物信息"
名称 Name | 引物序列5°至3° Primer sequence | 退火温度 Tm (℃) | 产物长度 Products length (bp) | 用途 Purpose | 登录号 miRbase ID |
---|---|---|---|---|---|
si-KLF12 | UGGACAAGUCCACUGGCUCAGUUUG | siRNA | |||
Negative Control | S: UUCUCCGAACGUGUCACGUTT A: ACGUGACACGUUCGGAGAATT | RNAi | |||
LPL | S: TCCTGGAGTGACGGAATCTGT A: GACAGCCAGTCCACCACGAT | 60 | 174 | qPCR | NM_001285607.1 |
PPARγ | S: AAGCGTCAGGGTTCCACTATG A: GAACCTGATGGCGTTATGAGAC | 60 | 197 | qPCR | NM_001285658.1 |
AP2 | S: TGAAGTCACTCCAGATGACAGG A: TGACACATTCCAGCACCAGC | 58 | 143 | qPCR | NM_001285623.1 |
C/EBPβ | S: CAAGAAGACGGTGGACAAGC A: AACAAGTTCCGCAGGGTG | 66 | 204 | qPCR | XM_018058020.1 |
Pref1 | S: CCGGCTTCATGGATAAGACCT A: GCCTCGCACTTGTTGAGGAA | 65 | 178 | qPCR | KP686197.1 |
SREBP1 | S: AAGTGGTGGGCCTCTCTGA A: GCAGGGGTTTCTCGGACT | 58 | 127 | qPCR | NM_001285755.1 |
UXT | S: GCAAGTGGATTTGGGCTGTAAC A: ATGGAGTCCTTGGTGAGGTTGT | 60 | 180 | qPCR | XP_005700899.1 |
[1] |
FUJISAWA T, KAGAWA K, HISATOMI K, KUBOTA K, SATO H, NAKAJIMA A, MATSUHASHI N. Obesity with abundant subcutaneous adipose tissue increases the risk of post-ERCP pancreatitis. Journal of Gastroenterology, 2016, 51(9): 931-938. doi: 10.1007/s00535-016-1160-x.
doi: 10.1007/s00535-016-1160-x |
[2] |
LUO L, LIU M. Adipose tissue in control of metabolism. The Journal of Endocrinology, 2016, 231(3): R77-R99. doi: 10.1530/JOE-16-0211.
doi: 10.1530/JOE-16-0211 |
[3] |
FOSTER M T, SOFTIC S, CALDWELL J, KOHLI R, DE KLOET A D, SEELEY R J. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1(2): e00015. doi: 10.1002/phy2.15.
doi: 10.1002/phy2.15 |
[4] |
BOOTH A D, MAGNUSON A M, FOUTS J, WEI Y, WANG D, PAGLISSOTTI M J, FOSTER M T. Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte, 2018, 7(4): 261-272. doi: 10.1080/21623945.2018.1525252.
doi: 10.1080/21623945.2018.1525252 |
[5] |
CHEN P, HOU X, HU G, WEI L, JIAO L, WANG H, CHEN S, WU J, BAO Y, JIA W. Abdominal subcutaneous adipose tissue: A favorable adipose depot for diabetes?. Cardiovascular Diabetology, 2018, 17(1): 93. doi: 10.1186/s12933-018-0734-8.
doi: 10.1186/s12933-018-0734-8 |
[6] |
SONG B, DI S, CUI S, CHEN N, WANG H, WANG X, GAO Q, TONG G, WANG H, HUANG X, DING L, GAO Y, LIU J, WANG X. Distinct patterns of PPARγ promoter usage, lipid degradation activity, and gene expression in subcutaneous adipose tissue of lean and obese swine. International Journal of Molecular Sciences, 2018, 19(12): 3892. doi: 10.3390/ijms19123892.
doi: 10.3390/ijms19123892 |
[7] |
FERNANDEZ-ZAPICO M E, LOMBERK G A, TSUJI S, DEMARS C J, BARDSLEY M R, LIN Y H, ALMADA L L, HAN J J, MUKHOPADHYAYD, ORDOG T, BUTTAR N S, URRUTIA R. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. The Biochemical Journal, 2011, 435(2): 529-537. doi: 10.1042/BJ20100773.
doi: 10.1042/BJ20100773 |
[8] |
GHALEB A M, NANDAN M O, CHANCHEVALAP S, DALTON W B, HISAMUDDIN I M, YANG V W. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Research, 2005, 15(2): 92-96. doi: 10.1038/sj.cr.7290271.
doi: 10.1038/sj.cr.7290271 |
[9] |
RANE M J, ZHAO Y, CAI L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine, 2019, 40: 743-750. doi: 10.1016/j.ebiom.2019.01.021.
doi: 10.1016/j.ebiom.2019.01.021 |
[10] |
HASHMI S, ZHANG J, SIDDIQUI S S, PARHAR R S, BAKHEET R, AL-MOHANNA F. Partner in fat metabolism: Role of KLFs in fat burning and reproductive behavior. 3 Biotech, 2011, 1(2): 59-72. doi: 10.1007/s13205-011-0016-6.
doi: 10.1007/s13205-011-0016-6 |
[11] |
GUO H, KHAN R, RAZA S H A, NING Y, WEI D, WU S, HOSSEINI S M, ULLAH I, GARCIA M D, ZAN L. KLF15 promotes transcription of KLF3 gene in bovine adipocytes. Gene, 2018, 659: 77-83. doi: 10.1016/j.gene.2018.03.049.
doi: 10.1016/j.gene.2018.03.049 |
[12] |
MATSUBARA Y, AOKI M, ENDO T, SATO K. Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2013, 165(3): 189-195. doi: 10.1016/j.cbpb.2013.04.002.
doi: 10.1016/j.cbpb.2013.04.002 |
[13] |
BANERJEE S S, FEINBERG M W, WATANABE M, GRAY S, HASPEL R L, DENKINGER D J, KAWAHARA R, HAUNER H, JAIN M K. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. The Journal of Biological Chemistry, 2003, 278(4): 2581-2584. doi: 10.1074/jbc.M210859200.
doi: 10.1074/jbc.M210859200 |
[14] | 郭红芳. KLF3和KLF15基因对牛前体脂肪细胞分化和脂质代谢调控研究[D]. 杨凌: 西北农林科技大学, 2018. |
GUO H F. The function of KLF3 and KLF15 in Bovine preadipocyte differentiation and lipid metabolism[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
[15] |
GODIN-HEYMANN N, BRABETZ S, MURILLO M M, SAPONARO M, SANTOS C R, LOBLEY A, EAST P, CHAKRAVARTY P, MATTHEWS N, KELLY G, JORDAN S, CASTELLANO E, DOWNWARD J. Tumour-suppression function of KLF12 through regulation of anoikis. Oncogene, 2016, 35(25): 3324-3334. doi: 10.1038/onc.2015.394.
doi: 10.1038/onc.2015.394 |
[16] |
MAK C S L, YUNG M M H, HUI L M N, LEUNG L L, LIANG R, CHEN K, LIU S S, QIN Y, LEUNG T H Y, LEE K F, CHAN K K L, NGAN H Y S, CHAN D W. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Molecular Cancer, 2017, 16(1): 11. doi: 10.1186/s12943-017-0582-2.
doi: 10.1186/s12943-017-0582-2 |
[17] |
HE Z, GUO X, TIAN S, ZHU C, CHEN S, YU C, JIANG J, SUN C. MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): 126. doi: 10.1186/s13046-019-1105-3.
doi: 10.1186/s13046-019-1105-3 |
[18] |
XUN J, WANG C, YAO J, GAO B, ZHANG L. Long non-coding RNA HOTAIR modulates KLF12 to regulate gastric cancer progression via PI3K/ATK signaling pathway by sponging miR-618. OncoTargets and Therapy, 2019, 12: 10323-10334. doi: 10.2147/OTT.S223957.
doi: 10.2147/OTT.S223957 |
[19] |
HUANG C, JIANG Y, ZHOU J, YAN Q, JIANG R, CHENG X, XING J, DING L, SUN J, YAN G, SUN H. Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reproductive Biology and Endocrinology: RB&E, 2017, 15(1): 25. doi: 10.1186/s12958-017-0243-8.
doi: 10.1186/s12958-017-0243-8 |
[20] |
MEI H, LI L, GRISWOLD M, MOSLEY T. Gene expression meta-analysis of seven candidate gene sets for diabetes traits following a GWAS pathway study. Frontiers in Genetics, 2018, 9: 52. doi: 10.3389/fgene.2018.00052.
doi: 10.3389/fgene.2018.00052 |
[21] |
SHEN L, TAN Z, GAN M, LI Q, CHEN L, NIU L, JIANG D, ZHAO Y, WANG J, LI X, ZHANG S, ZHU L. tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating adipogenesis. Biomolecules, 2019, 9(7). doi: 10.3390/biom9070274.
doi: 10.3390/biom9070274 |
[22] |
HE C, WANG Y, XU Q, XIONG Y, ZHU J, LIN Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Animal Science Journal, 2021, 92(1): e13514. doi: 10.1111/asj.13514.
doi: 10.1111/asj.13514 |
[23] |
池永东, 王永, 胡萌, 何小芳, 朱江江, 赵越, 林亚秋. 山羊不同组织器官的内参基因筛选. 基因组学与应用生物学, 2020, 39(2): 561-567. doi: 10.13417/j.gab.039.000561.
doi: 10.13417/j.gab.039.000561 |
CHI Y D, WANG Y, GU M, HE X F, ZHU J J, ZHAO Y, LIN Y Q. Screening of internal reference genes in different tissues and organs of goats. Genomics and Applied Biology, 2020, 39(2): 561-567. doi: 10.13417/j.gab.039.000561. (in Chinese)
doi: 10.13417/j.gab.039.000561 |
|
[24] |
ORCI L, COOK W S, RAVAZZOLA M, WANG M Y, PARK B H, MONTESANO R, UNGER R H. Rapid transformation of white adipocytes into fat-oxidizing machines. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 2058-2063. doi: 10.1073/pnas.0308258100.
doi: 10.1073/pnas.0308258100 |
[25] |
GAO Z, DAQUINAG A C, SU F, SNYDER B, KOLONIN M G. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge, England), 2018, 145(1). doi: 10.1242/dev.155861.
doi: 10.1242/dev.155861 |
[26] |
苑洪霞, 骆金红, 冯文武, 陈祥. 猪LYRM1基因对脂肪沉积的影响研究. 畜牧兽医学报, 2019, 50(4): 677-687. doi: 10.11843/j.issn.0366-6964.2019.04.001.
doi: 10.11843/j.issn.0366-6964.2019.04.001 |
YUAN H X, LUO J H, FENG W W, CHEN X. Study on the effect of LYRM1 gene on the fat deposition of pig. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4): 677-687. doi: 10.11843/j.issn.0366-6964.2019.04.001. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2019.04.001 |
|
[27] | 王香明. DNMT3A对猪肌内前体脂肪细胞增殖与分化的作用机制研究[D]. 杨凌: 西北农林科技大学, 2018. |
WANG X M. The mechanism of DNMT3A in proliferation and differentiation of porcine intramuscular preadipocytes[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
[28] |
MEHTA F, THEUNISSEN R, POST M J. Adipogenesis from bovine precursors. Methods in Molecular Biology (Clifton, N.J.), 2019, 1889: 111-125. doi: 10.1007/978-1-4939-8897-6_8.
doi: 10.1007/978-1-4939-8897-6_8 |
[29] |
柴孟龙, 李青莹, 姜昊, 刘红羽, 张嘉保, 吕文发. 锌指蛋白15在猪前体脂肪细胞分化中的作用. 吉林农业大学学报, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143.
doi: 10.13327/j.jjlau.2016.3143 |
CHAI M L, LI Q Y, JIANG H, LIU H Y, ZHANG J B, LÜ W F. Role of zinc finger protein15 in differentiation of porcine preadipocyte. Journal of Jilin Agricultural University, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143. (in Chinese)
doi: 10.13327/j.jjlau.2016.3143 |
|
[30] | 张娟娟. miR-20a-5p通过靶向Klf3调控小鼠骨髓间充质干细胞成脂分化的研究[D]. 天津: 天津医科大学, 2018. |
ZHANG J J. MiR-20a-5p Modulates adipogenic differentiation in mouse bone marrow derived stromal cells by targeting Klf3[D]. Tianjin: Tianjin Medical University, 2018. (in Chinese) | |
[31] |
ZHENG X, KUANG Y, LV W, CAO D, SUN Z, SUN X. Genome-wide association study for muscle fat content and abdominal fat traits in common carp (Cyprinus carpio). PloS ONE, 2016, 11(12): e0169127. doi: 10.1371/journal.pone.0169127.
doi: 10.1371/journal.pone.0169127 |
[32] |
KIM J, LEE T, KIM T H, LEE K T, KIM H. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: Evidence for candidate genes on human chromosome 2. BMC Genomics, 2012, 13: 711. doi: 10.1186/1471-2164-13-711.
doi: 10.1186/1471-2164-13-711 |
[33] |
PALMER N D, GOODARZI M O, LANGEFELD C D, WANG N, GUO X Q, TAYLOR K D, FINGERLIN T E, NORRIS J M, BUCHANAN T A, XIANG A H, et al. Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium[EB/OL]. Diabetes, 2015, 64(5): 1853-1866. doi: 10.2337/db14-0732.
doi: 10.2337/db14-0732 |
[34] |
SHEN X, HU Y, JIANG Y, LIU H, ZHU L, JIN X, SHAN H, ZHEN X, SUN L, YAN G, SUN H. Krüppel-like factor 12 negatively regulates human endometrial stromal cell decidualization. Biochemical and Biophysical Research Communications, 2013, 433(1): 11-17. doi: 10.1016/j.bbrc.2013.02.078.
doi: 10.1016/j.bbrc.2013.02.078 |
[35] |
HAYWOOD N J, SLATER T A, DROZD M, WARMKE N, MATTHEWS C, CORDELL P A, SMITH J, RAINFORD J, CHEEMA H, MAHER C, BRIDGE K I, YULDASHEVA N Y, CUBBON R M, KEARNEY M T, WHEATCROFT S B. IGFBP-1 in cardiometabolic pathophysiology-insights from Loss-of-Function and Gain-of-Function studies in male mice. Journal of the Endocrine Society, 2020, 4(1): bvz006. doi: 10.1210/jendso/bvz006.
doi: 10.1210/jendso/bvz006 |
[36] |
WHEATCROFT S B, KEARNEY M T. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: Implications for metabolic homeostasis. Trends in Endocrinology and Metabolism: TEM, 2009, 20(4): 153-162. doi: 10.1016/j.tem.2009.01.002.
doi: 10.1016/j.tem.2009.01.002 |
[37] |
HAYWOOD N J, SLATER T A, MATTHEWS C J, WHEATCROFT S B. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes[EB/OL]. Molecular Metabolism, 2019, 19: 86-96. doi: 10.1016/j.molmet.2018.10.008.
doi: 10.1016/j.molmet.2018.10.008 |
[38] |
PÉREZ-TORRES I, GUTIÉRREZ-ALVAREZ Y, GUARNER-LANS V, DÍAZ-DÍAZ E, MANZANO PECH L, CABALLERO-CHACÓN S D C. Intra-Abdominal Fat Adipocyte Hypertrophy through a progressive alteration of lipolysis and lipogenesis in metabolic syndrome rats. Nutrients, 2019, 11(7). doi: 10.3390/nu11071529.
doi: 10.3390/nu11071529 |
[39] |
RUPPERT P M M, KERSTEN S. A lipase fusion feasts on fat. The Journal of Biological Chemistry, 2020, 295(10): 2913-2914. doi: 10.1074/jbc.H120.012744.
doi: 10.1074/jbc.H120.012744 |
[40] |
NIMONKAR A V, WELDON S, GODBOUT K, PANZA D, HANRAHAN S, CUBBON R, XU F, TRAUGER J W, GAO J, VOZNESENSKY A. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: Implications for managing familial chylomicronemia syndrome. The Journal of Biological Chemistry, 2020, 295(10): 2900-2912. doi: 10.1074/jbc.RA119.011079.
doi: 10.1074/jbc.RA119.011079 |
[41] |
JEON Y G, LEE J H, JI Y, SOHN J H, LEE D, KIM D W, YOON S G, SHIN K C, PARK J, SEONG J K, CHO J Y, CHOE S S, KIM J B. RNF20 functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes. Diabetes, 2020, 69(1): 20-34. doi: 10.2337/db19-0508.
doi: 10.2337/db19-0508 |
[42] |
MORÁN-SALVADOR E, LÓPEZ-PARRA M, GARCÍA-ALONSO V, TIOS E, MARTÍNEZ-CLEMENTE M, GONZÁLEZ-PÉRIZ A, LÓPEZ-VICARIO C, BARAK Y, ARROYO V, CLÁRIA J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2011, 25(8): 2538-2550. doi: 10.1096/fj.10-173716.
doi: 10.1096/fj.10-173716 |
[43] |
RODEHEFFER M S, BIRSOY K, FRIEDMAN J M. Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135(2): 240-249. doi: 10.1016/j.cell.2008.09.036.
doi: 10.1016/j.cell.2008.09.036 |
[44] |
MITTERBERGER M C, LECHNER S, MATTESICH M, KAISER A, PROBST D, WENGER N, PIERER G, ZWERSCHKE W. DLK1 (PREF1) is a negative regulator of adipogenesis in CD105+/CD90+/ CD34+/CD31-/FABP4- adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women . Stem Cell Research, 2012, 9(1): 35-48. doi: 10.1016/j.scr.2012.04.001.
doi: 10.1016/j.scr.2012.04.001 |
[1] | 李恒,字向东,王会,熊燕,吕明杰,刘宇,蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选[J]. 中国农业科学, 2022, 55(23): 4753-4768. |
[2] | 关若冰,李海超,苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
[3] | 李正刚,汤亚飞,佘小漫,于琳,蓝国兵,何自福. 侵染萝卜的油菜花叶病毒广东分离物分子特征及其致病性分析[J]. 中国农业科学, 2022, 55(14): 2752-2761. |
[4] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[5] | 冉宏标,赵丽玲,王会,柴志欣,王吉坤,王嘉博,武志娟,钟金城. LncFAM200B对牦牛肌内前体脂肪细胞脂质沉积的影响[J]. 中国农业科学, 2022, 55(13): 2654-2666. |
[6] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[7] | 张卫东,郑玉杰,葛伟,张月朗,李芳,王昕. 单细胞测序对绒山羊毛乳头细胞的鉴定[J]. 中国农业科学, 2022, 55(12): 2436-2446. |
[8] | 陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160. |
[9] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[10] | 赵乐,杨海丽,李佳璐,杨永恒,张蓉,程文强,成磊,赵永聚. TETs与细胞程序性死亡相关基因在山羊妊娠早期输卵管及子宫角的表达[J]. 中国农业科学, 2021, 54(4): 845-854. |
[11] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[12] | 冯云奎,王健,马金亮,张柳明,李拥军. miR-31-5p对山羊毛囊干细胞增殖和凋亡的影响[J]. 中国农业科学, 2021, 54(23): 5132-5143. |
[13] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[14] | 陈媛,蔡禾,李利,王林杰,仲涛,张红平. 山羊TNNT3基因可变剪切及其对骨骼肌细胞分化的作用[J]. 中国农业科学, 2021, 54(20): 4466-4477. |
[15] | 张丽,汤亚飞,李正刚,于琳,蓝国兵,佘小漫,何自福. 侵染广东省葫芦科作物的中国南瓜曲叶病毒的分子特征[J]. 中国农业科学, 2021, 54(19): 4097-4109. |
|