中国农业科学 ›› 2022, Vol. 55 ›› Issue (15): 2949-2960.doi: 10.3864/j.issn.0578-1752.2022.15.007
收稿日期:
2022-02-21
接受日期:
2022-03-30
出版日期:
2022-08-01
发布日期:
2022-08-02
通讯作者:
苗雪霞
作者简介:
关若冰,E-mail: 基金资助:
GUAN RuoBing1,2(),LI HaiChao1,2,MIAO XueXia2(
)
Received:
2022-02-21
Accepted:
2022-03-30
Online:
2022-08-01
Published:
2022-08-02
Contact:
XueXia MIAO
摘要:
RNA生物农药是利用RNA干扰(RNA interference,RNAi)原理,通过抑制生物体重要功能基因的表达,造成有害生物发育停滞或死亡,进而达到病虫害防控的目的。该技术不会改变有害生物的基因组,也不会对生态系统造成不良影响。由于RNA生物农药具有精准、高效、绿色无污染等优势,受到了植物保护专家的重视,将其称为“农药史上的第三次革命”。近年来,随着拜耳公司表达昆虫dsRNA的抗虫玉米MON87411获得多个国家的安全证书,引起各大传统农化公司投入大量人力物力进行布局和产品开发。此外,还吸引了资本市场的关注,涌现了一大批基于RNAi技术进行病虫害防控的新兴公司,极大地加速了RNA生物农药的产业化步伐。随着RNA生物农药的快速发展,必将改变全球农药市场格局,这无疑是一种新的挑战。尽管我国在该领域的研发起步较早,起点也很高,但是,大多数研究主要集中在基础理论,而应用开发相对薄弱,已经远远落后于国际同行。与传统农药相比,RNA生物农药无论是作用机理还是应用开发,均有其独特之处,亟需监管部门建立匹配的研发、应用、生产等技术标准。完善相应的法律法规,对生产进行监督指导,促进我国RNA生物农药的快速发展,降低国际农药巨头在该领域形成技术垄断的风险。基于此,本文系统总结了目前RNA生物农药的国内外研发现状、商业化概况、未来发展趋势及欧美国家针对RNA生物农药相关的法规政策。此外,本文也指出了RNA生物农药在研发以及产业化过程中一些亟需解决的问题,期望为国内RNA生物农药开发与监管提供有益的参考。
关若冰,李海超,苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960.
GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides[J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[1] |
FIRE A, XU S Q, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
doi: 10.1038/35888 |
[2] | PERRIMON N, NI J Q, PERKINS L. In vivo RNAi: Today and tomorrow. Cold Spring Harbor Perspectives in Biology, 2010, 2(8): a003640. |
[3] | BRUGGENWIRTH I M A, MARTINS P N. RNA interference therapeutics in organ transplantation: The dawn of a new era. American Jounal of Transplantation, 2020, 20(4): 931-941. |
[4] |
ADAMS D, GONZALEZ-DUARTE A, O’RIORDAN W D, YANG C C, UEDA M, KRISTEN A V, TOURNEV I, SCHMIDT H H, COELHO T, BERK J L, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1): 11-21.
doi: 10.1056/NEJMoa1716153 |
[5] |
DAMASE T R, SUKHOVERSHIN R, BOADA C, TARABALLI F, PETTIGREW R I, COOKE J P. The limitless future of RNA therapeutics. Frontiers in Bioengineering and Biotechnology, 2021, 9: 628137.
doi: 10.3389/fbioe.2021.628137 |
[6] |
LAMB Y N. Inclisiran: First approval. Drugs, 2021, 81(3): 389-395.
doi: 10.1007/s40265-021-01473-6 |
[7] |
CHRISTIAENS O, NIU J Z, TANING C N T. RNAi in insects: A revolution in fundamental research and pest control applications. Insects, 2020, 11(7): 415.
doi: 10.3390/insects11070415 |
[8] |
VOGEL E, SANTOS D, MINGELS L, VERDONCKT T W, BROECK J V. RNA interference in insects: Protecting beneficials and controlling pests. Frontiers in Physiology, 2018, 9: 1912.
doi: 10.3389/fphys.2018.01912 |
[9] | 李本杰, 徐汉虹. 新一代杀虫剂--在叶部能稳定应用的dsRNA. 世界农药, 2016, 38(6): 1-7. |
LI B J, XU H H. New pestcide-dsRNA can be stably applied in the leaves. World Pesticides, 2016, 38(6): 1-7. (in Chinese) | |
[10] |
TANING C N, ARPAIA S, CHRISTIAENS O, DIETZ-PFEILSTETTER A, JONES H, MEZZETTI B, SABBADINI S, SORTEBERG H G, SWEET J, VENTURA V, SMAGGHE G. RNA-based biocontrol compounds: Current status and perspectives to reach the market. Pest Management Science, 2020, 76(3): 841-845.
doi: 10.1002/ps.5686 |
[11] |
ZHU K Y, PALLI S R. Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 2020, 65: 293-311.
doi: 10.1146/annurev-ento-011019-025224 |
[12] | 李晨雨, 裴新国, 张伊杰, 高聪芬. RNAi技术在昆虫防控研究中的应用和发展前景. 现代农药, 2021, 20(1): 1-6. |
LI C Y, PEI X G, ZHANG Y J, GAO C F. Application and development prospect of RNAi technology in pest control. Modern Agrochemicals, 2021, 20(1): 1-6. (in Chinese) | |
[13] | 胡少茹, 关若冰, 李海超, 苗雪霞. RNAi在害虫防治中应用的重要进展及存在问题. 昆虫学报, 2019, 62(4): 506-515. |
HU S R, GUAN R B, LI H C, MIAO X X. Application of RNAi in insect pest management: Important progress and problems. Acta Entomologica Sinica, 2019, 62(4): 506-515. (in Chinese) | |
[14] |
ARPAIA S, CHRISTIAENS O, GIDDINGS K, JONES H, MEZZETTI B, MORONTA-BARRIOS F, PERRY J N, SWEET J B, TANING C N T, SMAGGHE G, DIETZ-PFEILSTETTER A. Biosafety of GM crop plants expressing dsRNA: Data requirements and EU regulatory considerations. Frontiers in Plant Science, 2020, 11: 940.
doi: 10.3389/fpls.2020.00940 |
[15] |
DARLINGTON M, REINDERS J D, SETHI A, LU A L, RAMASESHADRI P, FISCHER J R, BOECKMAN C J, PETRICK J S, ROPER J M, NARVA K E, VELEZ A M. RNAi for Western corn rootworm management: Lessons learned, challenges, and future directions. Insects, 2022, 13(1): 57.
doi: 10.3390/insects13010057 |
[16] |
BRAMLETT M, PLAETINCK G, MAIENFISCH P. RNA-based biocontrols-A new paradigm in crop protection. Engineering, 2020, 6(5): 522-527.
doi: 10.1016/j.eng.2019.09.008 |
[17] |
RODRIGUES T B, MISHRA S K, SRIDHARAN K, BARNES E R, ALYOKHIN A, TUTTLE R, KOKULAPALAN W, GARBY D, SKIZIM N J, TANG Y W, et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Frontiers in Plant Science, 2021, 12: 728652.
doi: 10.3389/fpls.2021.728652 |
[18] |
GUAN R, CHU D, HAN X, MIAO X, LI H. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control. Frontiers in Bioengineering and Biotechnology, 2021, 9: 753790.
doi: 10.3389/fbioe.2021.753790 |
[19] |
ZOTTI M, DOS SANTOS E A, CAGLIARI D, CHRISTIAENS O, TANING C N T, SMAGGHE G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 2018, 74(6): 1239-1250.
doi: 10.1002/ps.4813 |
[20] |
BAUM J A, BOGAERT T, CLINTON W, HECK G R, FELDMANN P, ILAGAN O, JOHNSON S, PLAETINCK G, MUNYIKWA T, PLEAU M, VAUGHN T, ROBERTS J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007, 25(11): 1322-1326.
doi: 10.1038/nbt1359 |
[21] |
MAO Y B, CAI W J, WANG J W, HONG G J, TAO X Y, WANG L J, HUANG Y P, CHEN X Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 2007, 25(11): 1307-1313.
doi: 10.1038/nbt1352 |
[22] |
GUAN R, CHEN Q, LI H, HU S, MIAO X, WANG G, YANG B. Knockout of the HaREase gene improves the stability of dsRNA and increases the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin. Frontiers in Physiology, 2019, 10: 1368.
doi: 10.3389/fphys.2019.01368 |
[23] | GUAN R B, LI H C, FAN Y J, HU S R, CHRISTIAENS O, SMAGGHE G, MIAO X X. A nuclease specific to lepidopteran insects suppresses RNAi. The Jounal of Biological Chemistry, 2018, 293(16): 6011-6021. |
[24] |
LI H, GUAN R, GUO H, MIAO X. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant, Cell and Environment, 2015, 38(11): 2277-2285.
doi: 10.1111/pce.12546 |
[25] |
WANG Y B, ZHANG H, LI H C, MIAO X X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE, 2011, 6(4): e18644.
doi: 10.1371/journal.pone.0018644 |
[26] | ZHANG H, LI H, GUAN R, MIAO X. Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae. Entomologia Experimentalis et Applicata, 2015, 155(3): 218-228. |
[27] |
ZHANG H, LI H C, MIAO X X. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Science, 2013, 20(1): 15-30.
doi: 10.1111/j.1744-7917.2012.01513.x |
[28] |
HUA C, ZHAO J H, GUO H S. Trans-kingdom RNA silencing in plant-fungal pathogen interactions. Molecular Plant, 2018, 11(2): 235-244.
doi: 10.1016/j.molp.2017.12.001 |
[29] |
ZHAO J H, GUO H S. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Current Opinion in Genetics and Development, 2019, 58/59: 62-69.
doi: 10.1016/j.gde.2019.07.019 |
[30] | ZHAO J H, GUO H S. RNA silencing: From discovery and elucidation to application and perspectives. Journal of Integrative Plant Biology, 2022, 64(2): 476-498. |
[31] |
ZHANG T, JIN Y, ZHAO J H, GAO F, ZHOU B J, FANG Y Y, GUO H S. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Molecular Plant, 2016, 9(6): 939-942.
doi: 10.1016/j.molp.2016.02.008 |
[32] |
ZHANG T, ZHAO Y L, ZHAO J H, WANG S, JIN Y, CHEN Z Q, FANG Y Y, HUA C L, DING S W, GUO H S. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2(10): 16153.
doi: 10.1038/nplants.2016.153 |
[33] |
LIU F Z, YANG B, ZHANG A H, DING D R, WANG G R. Plant-mediated RNAi for controlling Apolygus lucorum. Frontiers in Plant Science, 2019, 10: 64.
doi: 10.3389/fpls.2019.00064 |
[34] |
YAN S, REN B Y, ZENG B, SHEN J. Improving RNAi efficiency for pest control in crop species. Biotechniques, 2020, 68(5): 283-290.
doi: 10.2144/btn-2019-0171 |
[35] |
YAN S, REN B Y, SHEN J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Science, 2021, 28(1): 21-34.
doi: 10.1111/1744-7917.12822 |
[36] | 杨雨姮, 杨华蕊, 杨柳青, 沈杰, 闫硕. RNA杀虫剂的研究进展. 中国植保导刊, 2021, 41(3): 25-29, 45. |
YANG Y H, YANG H R, YANG L Q, SHEN J, YAN S. Research progress of RNA insecticides. China Plant Protection, 2021, 41(3): 25-29, 45. (in Chinese) | |
[37] |
SONG H, ZHANG J, LI D, COOPER A M W, SILVER K, LI T, LIU X, MA E, ZHU K Y, ZHANG J. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochemistry and Molecular Biology, 2017, 86: 68-80.
doi: 10.1016/j.ibmb.2017.05.008 |
[38] |
YU R, XU X, LIANG Y, TIAN H, PAN Z, JIN S, WANG N, ZHANG W. The insect ecdysone receptor is a good potential target for RNAi-based pest control. International Journal of Biological Sciences, 2014, 10(10): 1171-1180.
doi: 10.7150/ijbs.9598 |
[39] | 田宏刚, 刘同先, 张文庆. RNAi技术在中国昆虫学研究中的发展、应用与展望. 应用昆虫学报, 2019, 56(4): 605-616. |
TIAN H G, LIU T X, ZHANG W Q. Progress in RNAi technology, and prospects for its application, in entomological research in China. Chinese Journal of Applied Entomology, 2019, 56(4): 605-616. (in Chinese) | |
[40] |
PAPADOPOULOU N, DEVOS Y, ALVAREZ-ALFAGEME F, LANZONI A, WAIGMANN E. Risk assessment considerations for genetically modified RNAi plants: EFSA’s activities and perspective. Frontiers in Plant Science, 2020, 11: 445.
doi: 10.3389/fpls.2020.00445 |
[41] | EFSA Panel on Genetically Modified Organisms (GMO). Assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA-GMONL-2015-124). EFSA Journal, 2018, 16(6): e05310. |
[42] |
MENDELSOHN M L, GATHMANN A, KARDASSI D, SACHANA M, HOPWOOD E M, DIETZ-PFEILSTETTER A, MICHELSEN- CORREA S, FLETCHER S J, SZEKACS A. Summary of discussions from the 2019 OECD conference on RNAi based pesticides. Frontiers in Plant Science, 2020, 11: 740.
doi: 10.3389/fpls.2020.00740 |
[43] | Organisation for Economic Cooperation and Development (OECD). Considerations for the Environmental Risk Assessment of the Application of Sprayed or Externally Applied dsRNA-Based Pesticides. Series on Pesticides No. 104, ENV/JM/MONO (2020) 26. Paris: OECD, 2020. |
[44] |
FLETCHER S J, REEVES P T, HOANG B T, MITTER N. A perspective on RNAi-based biopesticides. Frontiers in Plant Science, 2020, 11: 51.
doi: 10.3389/fpls.2020.00051 |
[45] | RANK A P, KOCH A. Lab-to-field transition of RNA spray applications - How far are we? Frontiers in Plant Science, 2021, 12: 755203. |
[46] |
DIETZ-PFEILSTETTER A, MENDELSOHN M, GATHMANN A, KLINKENBUß D. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. Frontiers in Plant Science, 2021, 12: 682387.
doi: 10.3389/fpls.2021.682387 |
[47] | Environmental Protection Agency (EPA) RNAi Technology: Program Formulation for Human Health and Ecological Risk Assessment. FIFRA Scientific Advisory Panel Meeting 2014, SAP Minutes No. 2014-02. |
[48] | Regulation (EC) No 1107/2009 of the European parliament and of the council of 21 October 2009. Concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 2009, 309: 1-50. |
[49] | TANING C N T, MEZZETTI B, KLETER G, SMAGGHE G, BARALDI E. Does RNAi-based technology fit within EU sustainability goals? Trends in Biotechnology, 2021, 39(7): 644-647. |
[50] | CHRISTIAENS O, DZHAMBAZOVA T, KOSTOV K, ARPAIA S, JOGA M R, URRU I, SWEET J, SMAGGHE G. Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi-based GM plants. EFSA Supporting Publications, 2018: EN-1424. |
[51] |
KLETER G A. Food safety assessment of crops engineered with RNA interference and other methods to modulate expression of endogenous and plant pest genes. Pest Management Science, 2020, 76(10): 3333-3339.
doi: 10.1002/ps.5957 |
[52] |
SCHIEMANN J, DIETZ-PFEILSTETTER A, HARTUNG F, KOHL C, ROMEIS J, SPRINK T. Risk assessment and regulation of plants modified by modern biotechniques: Current Status and Future Challenges. Annual Review of Plant Biology, 2019, 70: 699-726.
doi: 10.1146/annurev-arplant-050718-100025 |
[53] |
MEHLHORN S, HUNNEKUHL V S, GEIBEL S, NAUEN R, BUCHER G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: A brief guide. Frontiers in Zoology, 2021, 18(1): 60.
doi: 10.1186/s12983-021-00444-7 |
[54] |
TERENIUS O, PAPANICOLAOU A, GARBUTT J S, ELEFTHERIANOS I, HUVENNE H, KANGINAKUDRU S, ALBRECHTSEN M, AN C, AYMERIC J L, BARTHEL A, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57(2): 231-245.
doi: 10.1016/j.jinsphys.2010.11.006 |
[55] | 张秋朗, 刘建宏, 徐进, 叶辉. RNA干扰在鳞翅目昆虫中的应用研究进展. 生物灾害科学, 2021, 44(4): 363-378. |
ZHANG Q L, LIU J H, XU J, YE H. The mechanism and application of RNA interference in Lepidopteran insects. Biological Disaster Science, 2021, 44(4): 363-378. (in Chinese) | |
[56] | YOON J S, MOGILICHERLA K, GURUSAMY D, CHEN X, CHEREDDY S, PALLI S R. Double-stranded RNA binding protein, staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8334-8339. |
[57] |
MU X, GREENWALD E, AHMAD S, HUR S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Research, 2018, 46(10): 5239-5249.
doi: 10.1093/nar/gky177 |
[58] |
TIMMONS L, COURT D L, FIRE A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 2001, 263(1/2): 103-112.
doi: 10.1016/S0378-1119(00)00579-5 |
[59] |
MURPHY K A, TABULOC C A, CERVANTES K R, CHIU J C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Scientific Reports, 2016, 6: 22587.
doi: 10.1038/srep22587 |
[60] |
MYSORE K, LI P, WANG C W, HAPAIRAI L K, SCHEEL N D, REALEY J S, SUN L, SEVERSON D W, WEI N, DUMAN-SCHEEL M. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasites and Vectors, 2019, 12(1): 256.
doi: 10.1186/s13071-019-3504-x |
[61] |
LEZZERINI M, VAN DE VEN K, VEERMAN M, BRUL S, BUDOVSKAYA Y V. Specific RNA interference in Caenorhabditis elegans by ingested dsRNA expressed in Bacillus subtilis. PLoS ONE, 2015, 10(4): e0124508.
doi: 10.1371/journal.pone.0124508 |
[62] |
SAELIM H, LOPRASERT S, PHONGDARA A. Bacillus subtilis expressing dsVP28 improved shrimp survival from WSSV challenge. ScienceAsia, 2020, 46S(1): 19-26.
doi: 10.2306/scienceasia1513-1874.2020.S003 |
[63] |
CHRISTIAENS O, WHYARD S, VELEZ A M, SMAGGHE G. Double-stranded RNA technology to control insect pests: Current status and challenges. Frontiers in Plant Science, 2020, 11: 451.
doi: 10.3389/fpls.2020.00451 |
[64] |
MITTER N, WORRALL E A, ROBINSON K E, LI P, JAIN R G, TAOCHY C, FLETCHER S J, CARROLL B J, LU G Q, XU Z P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3: 16207.
doi: 10.1038/nplants.2016.207 |
[65] |
ZHANG K, WEI J, HUFF HARTZ K E, LYDY M J, MOON T S, SANDER M, PARKER K M. Analysis of RNA interference (RNAi) biopesticides: Double-stranded RNA (dsRNA) extraction from agricultural soils and quantification by RT-qPCR. Environment Science and Technology, 2020, 54(8): 4893-4902.
doi: 10.1021/acs.est.9b07781 |
[66] |
MEZZETTI B, SMAGGHE G, ARPAIA S, CHRISTIAENS O, DIETZ-PFEILSTETTER A, JONES H, KOSTOV K, SABBADINI S, OPSAHL-SORTEBERG H, VENTURA V, TANING C N T, SWEET J. RNAi: What is its position in agriculture? Journal of Pest Science, 2020, 93: 1125-1130.
doi: 10.1007/s10340-020-01238-2 |
[67] |
徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展. 生物技术通报, 2021, 37(1): 255-261.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653 |
XU X L, WANG F S, LIU Z R, FAN L J, JI X Y, JIANG J X, YAO Y J. Research progress of RNA interference technology in the field of entomology. Biotechnology Bulletin, 2021, 37(1): 255-261. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653 |
|
[68] | 张建珍, 柴林, 史学凯, 高璐, 范云鹤. RNA干扰技术与害虫防治. 山西大学学报(自然科学版), 2021, 44(5): 980-987. |
ZHANG J Z, CHAI L, SHI X K, GAO L, FAN Y H. RNA interference technology and pest control. Journal of Shanxi University (Natural Science Edition), 2021, 44(5): 980-987. (in Chinese) |
[1] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[2] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[3] | 陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160. |
[4] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[5] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[6] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[7] | 於卫东,潘碧莹,邱玲玉,黄镇,周泰,叶林,唐斌,王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能[J]. 中国农业科学, 2020, 53(23): 4802-4812. |
[8] | 张道伟,康奎,余亚娅,匡富萍,潘碧莹,陈静,唐斌. 白背飞虱酚氧化酶原PPO基因特性及其免疫应答[J]. 中国农业科学, 2020, 53(15): 3108-3119. |
[9] | 刘晓健,郭俊,张学尧,马恩波,张建珍. 飞蝗核受体基因LmE75的分子特性和功能分析[J]. 中国农业科学, 2020, 53(11): 2219-2231. |
[10] | 姚利晓,范海芳,张庆雯,何永睿,许兰珍,雷天刚,彭爱红,李强,邹修平,陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能[J]. 中国农业科学, 2020, 53(10): 1997-2008. |
[11] | 马雯,刘娇,张学尧,申国华,秦雪梅,张建琴. 飞蝗LmGSTS2的酶学特性及其对马拉硫磷、 p,p’-DDT的代谢分析[J]. 中国农业科学, 2019, 52(8): 1389-1399. |
[12] | 丁艳娟,刘永康,罗雨嘉,邓颖梅,徐红星,唐斌,徐彩娣. 褐飞虱GSK-3调控糖原与海藻糖代谢的潜在功能[J]. 中国农业科学, 2019, 52(7): 1237-1246. |
[13] | 贾盼,张晶,杨洋,刘卫敏,张建珍,赵小明. 飞蝗内表皮结构糖蛋白基因LmAbd-2的表达与功能分析[J]. 中国农业科学, 2019, 52(4): 651-660. |
[14] | 陈悦,王田幸子,杨烁,张彤,马金姣,燕高伟,刘玉晴,周艳,史佳楠,兰金苹,魏健,窦世娟,刘丽娟,杨明,李莉云,刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性[J]. 中国农业科学, 2019, 52(12): 2021-2032. |
[15] | 赵静, 陶蓉, 郝德君, 肖留斌, 谭永安. 甜菜夜蛾卵黄原蛋白受体基因的RNA干扰[J]. 中国农业科学, 2019, 52(1): 56-64. |
|