中国农业科学 ›› 2021, Vol. 54 ›› Issue (22): 4813-4825.doi: 10.3864/j.issn.0578-1752.2021.22.009
收稿日期:
2021-04-16
接受日期:
2021-06-10
出版日期:
2021-11-16
发布日期:
2021-11-19
通讯作者:
肖留斌
作者简介:
谭永安,E-mail: 基金资助:
TAN YongAn(),JIANG YiPing,ZHAO Jing,XIAO LiuBin()
Received:
2021-04-16
Accepted:
2021-06-10
Online:
2021-11-16
Published:
2021-11-19
Contact:
LiuBin XIAO
摘要:
【目的】克隆绿盲蝽(Apolygus lucorum)G蛋白偶联受体激酶2基因(AlGRK2)cDNA序列,明确其时空表达谱,阐明外源蜕皮激素(20E)对AlGRK2表达的影响,分析AlGRK2在绿盲蝽生长发育中的作用,为进一步研究其在蜕皮激素信号转导通路中的功能打下基础。【方法】RACE法克隆获得AlGRK2全长,实时荧光定量PCR(qRT-PCR)分析不同日龄绿盲蝽及雌成虫不同组织中AlGRK2的表达谱,分析外源20E诱导及RNAi处理后,AlGRK2 mRNA表达的应答反应及对绿盲蝽生长发育主要参数(发育历期、若虫体重及成虫羽化率)的影响。【结果】AlGRK2 cDNA序列全长2 715 bp,开放阅读框2 106 bp,编码701个氨基酸,ExPASy预测其蛋白分子量为80.2 kD,理论等电点为6.56;蛋白结构分析显示AlGRK2包含4个结构域,即G蛋白信号调节区(RGS,54—175 aa)、丝氨酸/苏氨酸激酶结构域(S-TKc,191—454 aa)、丝氨酸/苏氨酸型蛋白激酶的伸展部分(S-TK-X,455—534 aa)和PH结构域(PH,558—655 aa),其中PH结构域是GRK2蛋白的典型结构域;系统发育分析结果表明,绿盲蝽GRK2与茶翅蝽GRK2亲缘关系最近;AlGRK2在绿盲蝽1—16日龄虫体内均有表达,mRNA表达量呈现出波动式下降的模式,在绿盲蝽初始龄期的表达量较高,而在末龄期的表达量显著下降;AlGRK2在绿盲蝽雌成虫卵巢和脂肪体中高表达,在胸与足中的表达量较低;外源20E处理后,AlGRK2在绿盲蝽1日龄和3日龄表达量显著下调,AlGRK2在雌成虫各组织中均表达上调,在卵巢及脂肪体中上调幅度最大,相反的是,20E信号通路中PLC抑制剂U73122处理的AlGRK2表达量下调;绿盲蝽若虫发育历期、末龄若虫体重和成虫羽化率均显著下降,相反的是,U73122处理组若虫期的发育历期显著延长;此外,与注射dsGFP处理组相比,注射dsAlGRK2处理后绿盲蝽的AlGRK2表达水平显著下降,若虫死亡率及发育历期显著增加,而成虫羽化率和5龄若虫体重均显著下降。【结论】AlGRK2在绿盲蝽体内的表达谱显示出发育阶段特异性和组织特异性;外源20E抑制剂及RNAi处理后,均可抑制AlGRK2的表达,同时还可对绿盲蝽生长发育产生不利影响,表现为延缓绿盲蝽的发育进度、降低5龄若虫体重及成虫羽化率。
谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825.
TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum[J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
表1
本研究中所使用的引物"
目的 Purpose | 引物名称 Primer name | 引物序列Primer sequence (5′ to 3′) |
---|---|---|
克隆Cloning | AlGRK-F | AGYGTNMGVAGYGTNATGCA |
AlGRK-R | TCVGCKGCRTARAAYTTCAT | |
5′-AlGRK2-F | TGAAGAGAAGGAATCCCAGA | |
5′-AlGRK2-R | ACTTCGTTCTTCTTTTCGAG | |
3′-AlGRK2-F | GCTGGCACTCAACGAAAGGATCAT | |
3′-AlGRK2-R | GTATGACTTACGCCTTCCACACGC | |
dsRNA | AlGRK2-F | TTCCCGACTCCTTCTCATC |
AlGRK2-R | TTTCCGTTTCTGCTCCG | |
AlGRK2-T7F | TAATACGACTCACTATAGGGTTCCCGACTCCTTCTCATC | |
AlGRK2-T7R | TAATACGACTCACTATAGGGTTTCCGTTTCTGCTCCG | |
GFP-F | CACAAGTTCAGCGTGTCCG | |
GFP-R | CACCTTGATGCCGTTC | |
GFP-T7F | TAATACGACTCACTATAGGGCACAAGTTCAGCGTGTCCG | |
GFP-T7R | TAATACGACTCACTATAGGGCACCTTGATGCCGTTC | |
qRT-PCR | AlGRK2-QF | AGGAGCGTGATGCACAAATA |
AlGRK2-QR | CGCAGTAGTCCTTGAAGAGAAG | |
β-Actin-QF | ACCTGTACGCCAACACCGT | |
β-Actin-QR | TGGAGAGAGAGGCGAGGAT |
图2
AlGRK2与其他已知昆虫GRK氨基酸序列的系统进化树 绿盲蝽Apolygus lucorum GRK2(MN514868)、茶翅蝽Halyomorpha halys GRK2(XP_014284300)、烟粉虱Bemisia tabaci GRK2(XP_018907528)、湿木白蚁Zootermopsis nevadensis GRK1(XP_021942271)、大红葬甲Nicrophorus vespilloides GRK1(XP_017785563)、光肩星天牛Anoplophora glabripennis GRK1(XP_023313123)、赤拟谷盗Tribolium castaneum GRK1(XP_015838145)、猫蚤Ctenocephalides felis GRK1(XP_026471851)、胡锋Diachasma alloeum GRK1(XP_015116743)、西方蜜蜂Apis mellifera GRK1(XP_026297912)、佛罗里达弓背蚁Camponotus floridanus GRK1(XP_011267492)、切胸蚁Temnothorax curvispinosus GRK1(XP_024874981)、埃及伊蚊Aedes aegypti GRK1(XP_021706708)、小菜蛾Plutella xylostella GRK1(XP_011558851)、棉铃虫Helicoverpa armigera GRK2(ANZ22924)、黑腹果蝇Drosophila melanogaster GRK2(NP_476867)、玉米根萤叶甲Diabrotica virgifera virgifera GRK2(XP_028135185)、食粪金龟Onthophagus taurus GRK2(XP_022917771)"
表2
不同药剂处理下绿盲蝽若虫发育历期"
处理 Treatment | 若虫历期Developmental period of nymphs (d) | |||||
---|---|---|---|---|---|---|
1龄1st instar | 2龄2nd instar | 3龄3rd instar | 4龄4th instar | 5龄5th instar | 若虫期Nymph | |
乙醇Ethanol (CK) | 2.62±0.07bc | 3.51±0.07b | 3.60±0.07b | 3.55±0.07a | 3.77±0.09a | 17.04±0.18b |
20E | 2.42±0.07c | 3.17±0.05c | 3.02±0.09c | 2.96±0.04b | 3.38±0.08b | 14.94±0.19c |
U73122 | 2.93±0.09a | 3.85±0.05a | 3.80±0.06a | 3.67±0.07a | 3.83±0.09a | 18.09±0.18a |
20E+U73122 | 2.79±0.07ab | 3.66±0.07b | 3.79±0.06ab | 3.62±0.07a | 3.89±0.11a | 17.77±0.21a |
[1] | 陆宴辉, 吴孔明. 棉花盲椿象及其防治. 北京: 金盾出版社, 2008. |
LU Y H, WU K M. The Cotton Mirids and Its Control. Beijing: Jindun Publishing House, 2008. (in Chinese) | |
[2] |
LU Y H, WU K M, JIANG Y Y, XIAO B, LI P, FENG H Q, WYCKHUYS K A G, GUO Y Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010, 328(5982): 1151-1154.
doi: 10.1126/science.1187881 |
[3] |
PAN H S, LIU B, LU Y H, WYCKHUYS K A G. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE, 2015, 10(2): e0117153.
doi: 10.1371/journal.pone.0117153 |
[4] |
COSTANTINO B F B, BRICHE D K, ALEXANDRE K, SHEN K, MERRIAM J R, ANTONIEWSKI C, CALLENDER J L, HENRICH V C, PRESENTE A, ANDRES A J. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genetics, 2008, 4(6): e1000102.
doi: 10.1371/journal.pgen.1000102 |
[5] | CHEN C H, PAN J, DI Y Q, LIU W, HOU L, WANG J X, ZHAO X F. Protein kinase C delta phosphorylates ecdysone receptor B1 to promote gene expression and apoptosis under 20-hydroxyecdysone regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(34): E7121-E7130. |
[6] | 谭永安, 肖留斌, 郝德君, 赵静, 孙洋, 柏立新. 绿盲蝽AlEcR-A的单克隆抗体制备及在外源20E诱导下的应答. 中国农业科学, 2017, 50(1): 86-93. |
TAN Y A, XIAO L B, HAO D J, ZHAO J, SUN Y, BAI L X. Preparation of monoclonal antibody against AlEcR-A protein and its response induced by exogenous 20-hydroxyecdysone in Apolygus lucorum. Scientia Agricultura Sinica, 2017, 50(1): 86-93. (in Chinese) | |
[7] |
LIU W, CAI M J, WANG J X, ZHAO X F. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology, 2014, 155(5): 1738-1750.
doi: 10.1210/en.2013-2020 |
[8] | 谭永安. 磷脂酶C、E75在绿盲蝽蜕皮激素信号传导中的功能分析[D]. 南京: 南京林业大学, 2019. |
TAN Y A. The functional of phospholipase C and E75 in 20E pathway of Apolygus lucorum[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese) | |
[9] |
PENELA P, RIBAS C, MAYOR F. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular Signalling, 2003, 15(11): 973-981.
doi: 10.1016/S0898-6568(03)00099-8 |
[10] |
ZHANG X, KIM K M. Multifactorial regulation of G protein-coupled receptor endocytosis. Biomolecules and Therapeutics, 2017, 25(1): 26-43.
doi: 10.4062/biomolther.2016.186 |
[11] |
GUREVICH E V, TEAMER J J G, MUSHEGIAN A, GUREVICH V V. G protein-coupled receptor kinases: More than just kinases and not only for GPCRs. Pharmacology and Therapeutics, 2012, 133(1): 40-69.
doi: 10.1016/j.pharmthera.2011.08.001 |
[12] |
KOMOLOV K E, BENOVIC J L. G protein-coupled receptor kinases: Past, present and future. Cellular Signalling, 2018, 41: 17-24.
doi: 10.1016/j.cellsig.2017.07.004 |
[13] |
INGLESE J, KOCH W J, CARON M G, LEFKOWITZ R J. Isoprenylation in regulation of signal transduction by G-protein- coupled receptor kinases. Nature, 1992, 359(6391): 147-150.
doi: 10.1038/359147a0 |
[14] |
BENOVIC J L, MAYOR F, SOMERS R L, CARON M G, LEFKOWITZ R J. Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Nature, 1986, 321(6073): 869-872.
doi: 10.1038/321869a0 |
[15] |
BOEKHOFF I, INGLESE J, SCHLEICHER S, KOCH W J, LEFKOWITZ R J, BREER H. Olfactory desensitization requires membrane targeting of receptor kinase mediated by βγ-subunits of heterotrimeric G proteins. The Journal of Biological Chemistry, 1994, 269(1): 37-40.
doi: 10.1016/S0021-9258(17)42306-4 |
[16] | OPPERMANN M, DIVERSE-PIERLUISSI M, DRAZNER M H, DYER S L, FREEDMAN N J, PEPPEL K C, LEFKOWITZ R J. Monoclonal antibodies reveal receptor specificity among G-protein- coupled receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7649-7654. |
[17] |
STOFFEL R H, RANDALL R R, PREMONT R T, LEFKOWITZ R J, INGLESE J. Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. The Journal of Biological Chemistry, 1994, 269(45): 27791-27794.
doi: 10.1016/S0021-9258(18)46852-4 |
[18] |
PREMONT R T, MACRAE A D, STOFFEL R H, CHUNG N J, PITCHER J A, AMBROSE C, INGLESE J, MACDONALD M E, LEFKOWITZ R J. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. The Journal of Biological Chemistry, 1996, 271(11): 6403-6410.
doi: 10.1074/jbc.271.11.6403 |
[19] |
ZHAO W L, WANG D, LIU C Y, ZHAO X F. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Scientific Reports, 2016, 6: 29205.
doi: 10.1038/srep29205 |
[20] |
GARCIA-GUERRA L, VILA-BEDMAR R, CARRASCO-RANDO M, CRUCES-SANDE M, MARTÍN M, RUIZ-GÓMEZ A, RUIZ-GÓMEZ M, LORENZO M, FERNÁNDEZ-VELEDO S, MAYOR F, MURGA C, NIETO-VÁZQUEZ I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. Journal of Molecular Cell Biology, 2014, 6(4): 299-311.
doi: 10.1093/jmcb/mju025 |
[21] | KUBO I, KLOCKE J A, ASANO S. Insect ecdysis inhibitors from the East African medicinal plant Ajuga remota (Labiatae). Agricultural and Biological Chemistry, 1981, 45(8): 1925-1927. |
[22] |
BLACKFORD M J P, DINAN L. The effects of ingested 20- hydroxyecdysone on the larvae of Aglais urticae, Inachis io, Cynthia cardui (Lepidoptera: Nymphalidae) and Tyria jacobaeae (Lepidoptera: Arctiidae). Journal of Insect Physiology, 1997, 43(4): 315-327.
pmid: 12769893 |
[23] |
KLEIN R R, BOURDON D M, COSTALES C L, WAGNER C D, WHITE W L, WILLIAMS J D, HICKS S N, SONDEK J, THAKKER D R. Direct activation of human phospholipase C by its well known inhibitor U73122. The Journal of Biological Chemistry, 2011, 286(14): 12407-12416.
doi: 10.1074/jbc.M110.191783 |
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[25] | KARLSON P. On the hormonal control of insect metamorphosis. A historical review. The International Journal of Developmental Biology, 1996, 40(1): 93-96. |
[26] |
LANOT R, THIEBOLD J, COSTET-CORIO M F, BENVENISTE P, HOFFMANN J A. Further experimental evidence for the involvement of ecdysone in the control of meiotic reinitiation in oocytes of Locusta migratoria (Insecta, Orthoptera). Developmental Biology, 1988, 126(1): 212-214.
doi: 10.1016/0012-1606(88)90255-2 |
[27] |
LOEB M J, DE LOOF A, GELMAN D B, HAKIM R S, JAFFE H, KOCHANSKY J P, MEOLA S M, SCHOOFS L, STEEL C, VAFOPOULOU X, WAGNER R M, WOODS C W. Testis ecdysiotropin, an insect gonadotropin that induces synthesis of ecdysteroid. Archives of Insect Biochemistry and Physiology, 2010, 47(4): 181-188.
doi: 10.1002/(ISSN)1520-6327 |
[28] | DAIMON T, UCHIBORI M, NAKAO H, SEZUTSU H, SHINODA T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(31): E4226-E4235. |
[29] |
MALAUSA T, SALLES M, MARQUET V, GUILLEMAUD T, ALLA S, MARION-POLL F, LAPCHIN L. Within-species variability of the response to 20-hydroxyecdysone in peach-potato aphid (Myzus persicae Sulzer). Journal of Insect Physiology, 2006, 52(5): 480-486.
doi: 10.1016/j.jinsphys.2006.01.007 |
[30] |
SUN L J, LIU Y J, SHEN C P. The effects of exogenous 20-hydroxyecdysone on the feeding, development, and reproduction of Plutella xylostella (Lepidoptera: Plutellidae). Florida Entomologist, 2015, 98(2): 606-612.
doi: 10.1653/024.098.0233 |
[31] |
MARINISSEN M J, GUTKIND J S. G-protein-coupled receptors and signaling networks: Emerging paradigms. Trends in Pharmacological Sciences, 2001, 22(7): 368-376.
doi: 10.1016/S0165-6147(00)01678-3 |
[32] |
BELMONTE S L, BLAXALL B C. G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 2011, 109(3): 309-319.
doi: 10.1161/CIRCRESAHA.110.231233 |
[33] |
KANG J H, TOITA R, KAWANO T, MURATA M, ASAI D. Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids, 2020, 52(6): 863-870.
doi: 10.1007/s00726-020-02864-x |
[34] |
APPLE R T, FRISTROM J W. 20-Hydroxyecdysone is required for, and negatively regulates, transcription of Drosophila pupal cuticle protein genes. Developmental Biology, 1991, 146(2): 569-582.
doi: 10.1016/0012-1606(91)90257-4 |
[35] |
DOCTOR J, FRISTRIM D, FRISTRIM J W. The pupal cuticle of Drosophila: Biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone. The Journal of Cell Biology, 1985, 101(1): 189-200.
doi: 10.1083/jcb.101.1.189 |
[36] |
SALCEDO A, MAYOR F, PENELA P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. The EMBO Journal, 2006, 25(20): 4752-4762.
doi: 10.1038/sj.emboj.7601351 |
[37] |
HUANG J A, NALLI A D, MSHAVADI S, KUMAR D P, MURTHY K S. Inhibition of Gαi activity by Gβγ is mediated by PI 3-kinase-γ- and cSrc- dependent tyrosine phosphorylation of Gαi and recruitment of RGS12. American Journal of Physiology Gastrointestinal and Liver Physiology, 2014, 306(9): G802-G810.
doi: 10.1152/ajpgi.00440.2013 |
[38] |
WALDSCHMIDT H V, HOMAN K T, CRUZ-RODRIGUEZ O, CATO M C, WANINGER-SARONI J, LARIMORE K M, CANNAVO A, SONG J, CHEUNG J Y, KIRCHHOFF P D, KOCH W J, TESMER J J G, LARSEN S D. Structure-based design, synthesis and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. Journal of Medicinal Chemistry, 2016, 59(8): 3793-3807.
doi: 10.1021/acs.jmedchem.5b02000 |
[39] | JABER M, KOCH W J, ROCKMAN H, SMITH B, BOND R A, SULIK K K, ROSS J, LEFKOWITZ R J, CARON M G, GIROS B. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 12974-12979. |
[40] |
PHILIPP M, FRALISH G B, MEIONI A R, CHEN W, MACINNES A W, BARAK L S, CARON M G. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Molecular Biology of the Cell, 2008, 19(12): 5478-5489.
doi: 10.1091/mbc.e08-05-0448 |
[41] |
WANG J J, LUO J S, ARYAL D K, WETSEL W C, NASS R, BENOVIC J L. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. The Journal of Biological Chemistry, 2017, 292(14): 5943-5956.
doi: 10.1074/jbc.M116.760850 |
[42] |
ISAAC R E, REES H H. Isolation and identification of ecdysteroid phosphates and acetylecdysteroid phosphates from developing eggs of the locust, Schistocerca gregaria. The Biochemical Journal, 1984, 221(2): 459-464.
doi: 10.1042/bj2210459 |
[43] | JIANG X, YANG P, MA L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10183-10188. |
[44] | 杨中侠, 文礼章, 吴青君, 王少丽, 徐宝云, 张友军. RNAi技术在昆虫功能基因研究中的应用进展. 昆虫学报, 2008, 51(10): 1077-1082. |
YANG Z X, WEN L Z, WU Q J, WANG S L, XU B Y, ZHANG Y J. Application of RNA interference in studying gene functions in insects. Acta Entomologica Sinica, 2008, 51(10): 1077-1082. (in Chinese) | |
[45] |
MCFARLANE M, LAURETI M, LEVEE T, TERRY S, KOHL A, PONDEVILLE E. Improved transient silencing of gene expression in the mosquito female Aedes aegypti. Insect Molecular Biology, 2021, 30(3): 355-365.
doi: 10.1111/imb.v30.3 |
[46] | ZHU J H, LIU X Q, ZHU K M, ZHOU H Y, LI L, LI Z X, QIN W W, HE Y P. Knockdown of TRPV genes affects the locomotion and feeding behavior of Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Insect Science, 2020, 20(1): 9. |
[47] | 黄海山. 家蚕脂动激素受体信号转导机制研究[D]. 杭州: 浙江大学, 2010. |
HUANG H S. The mechanism of signal transduction of adipokinetic hormone receptor in Bombyx mori[D]. Hangzhou: Zhejiang University, 2010. (in Chinese) |
[1] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[2] | 李雨泽,朱嘉伟,林蔚,蓝茉莹,夏黎明,张艺粒,罗聪,黄桂香,何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选[J]. 中国农业科学, 2022, 55(24): 4912-4926. |
[3] | 关若冰,李海超,苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
[4] | 渠成,王然,李峰奇,罗晨. 烟粉虱味觉受体基因BtabGR1和BtabGR2的克隆与表达模式分析[J]. 中国农业科学, 2022, 55(13): 2552-2561. |
[5] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[6] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[7] | 张莉,张楠,江虎强,吴帆,李红亮. 中华蜜蜂NPC2基因家族克隆及表达模式分析[J]. 中国农业科学, 2022, 55(12): 2461-2471. |
[8] | 陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160. |
[9] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[10] | 郑海霞,高玉林,张方梅,杨超霞,蒋健,朱勋,张云慧,李祥瑞. 马铃薯甲虫热激蛋白基因Ld-hsp70的克隆及温度胁迫下的表达特性[J]. 中国农业科学, 2021, 54(6): 1163-1175. |
[11] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[12] | 张璐,宗亚奇,徐维华,韩蕾,孙浈育,陈朝晖,陈松利,张凯,程杰山,唐美玲,张洪霞,宋志忠. 葡萄Fe-S簇装配基因的鉴定、克隆和表达特征分析[J]. 中国农业科学, 2021, 54(23): 5068-5082. |
[13] | 叶方婷,潘鑫峰,毛志君,李兆伟,范凯. 睡莲转录因子bZIP家族的分子进化以及功能分析[J]. 中国农业科学, 2021, 54(21): 4694-4708. |
[14] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[15] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
|