中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 4933-4942.doi: 10.3864/j.issn.0578-1752.2021.23.001
刘玉晴1(),燕高伟1,张彤2,兰金苹3,郭亚璐4,李莉云1,刘国振1(
),窦世娟1(
)
收稿日期:
2021-05-08
接受日期:
2021-07-02
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
刘国振,窦世娟
作者简介:
刘玉晴,E-mail: 基金资助:
LIU YuQing1(),YAN GaoWei1,ZHANG Tong2,LAN JinPing3,GUO YaLu4,LI LiYun1,LIU GuoZhen1(
),DOU ShiJuan1(
)
Received:
2021-05-08
Accepted:
2021-07-02
Online:
2021-12-01
Published:
2021-12-06
Contact:
GuoZhen LIU,ShiJuan DOU
摘要:
【背景】前期研究发现,水稻病程相关蛋白质OsPR1A的表达受上游抗病基因Xa21调控,接菌后早期启动Xa21介导的OsPR1A较高水平表达对水稻抵抗白叶枯病菌至关重要。同时OsPR1A也受到水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,Xoo)的诱导表达。对于OsPR1A的研究绝大部分是作为抗性反应发生的标志基因佐证其他基因或途径在抗性中的作用,缺乏直接的证据证实OsPR1A本身的生物学功能。【目的】通过获得OsPR1a-OX超表达转基因植株,调查其表型及农艺性状,并明确OsPR1A蛋白质表达与抗性的关系,为鉴定OsPR1A功能提供依据。【方法】通过农杆菌介导法,将构建的OsPR1a-OX转化载体转入到水稻受体4021中,利用PCR和免疫印迹(western blot,WB)技术分别在基因水平和蛋白质水平上筛选并鉴定OsPR1A超表达阳性纯合株系。在成熟期,调查OsPR1A超表达转基因植株的表型及农艺性状(株高、穗长、分蘖数、结实率和籽粒大小等)。在31℃条件下,将生长2周的水稻幼苗TP309、4021和OsPR1A超表达转基因植株接种水稻白叶枯病菌,并在接菌0、2、4、6、8、10和12 d时测量病斑长度。在接菌0、4和6 d时,收集TP309、4021和OsPR1A超表达转基因植株的水稻叶片,提取蛋白质,利用WB技术检测OsPR1A的表达特征。【结果】构建了OsPR1a-OX转化载体,并转入到受体4021中,筛选并鉴定到2个OsPR1A超表达转基因纯合株系(#704和#709)。调查了OsPR1A超表达转基因植株在成熟期的表型及农艺性状,与对照4021相比,#704和#709的株高较矮、穗长较短、分蘖数减少、结实率降低,但籽粒稍大,可能与结实率低有关。在31℃条件下,OsPR1A超表达转基因植株的病斑长度与对照4021相比明显缩短,结果具有显著性差异(P<0.05)。在接菌0、4和6 d的材料中,超表达转基因植株#704和#709中OsPR1A始终有较高水平的表达丰度,从而提高了对白叶枯病菌的抗性。【结论】采用农杆菌介导法,获得OsPR1A超表达转基因植株;超表达OsPR1A影响到水稻的正常发育过程;超表达OsPR1A后增强了Xa21介导的水稻对白叶枯病的抗性。
刘玉晴,燕高伟,张彤,兰金苹,郭亚璐,李莉云,刘国振,窦世娟. 超表达OsPR1A增强了Xa21介导的水稻对白叶枯病的抗性反应[J]. 中国农业科学, 2021, 54(23): 4933-4942.
LIU YuQing,YAN GaoWei,ZHANG Tong,LAN JinPing,GUO YaLu,LI LiYun,LIU GuoZhen,DOU ShiJuan. Overexpression of OsPR1A Enhanced Xa21-Mediated Resistance to Rice Bacterial Blight[J]. Scientia Agricultura Sinica, 2021, 54(23): 4933-4942.
[1] |
JIANG N, YAN J, LIANG Y, SHI Y, HE Z, WU Y, ZENG Q, LIU X, PENG J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)-An updated review. Rice, 2020, 13(1):3-14.
doi: 10.1186/s12284-019-0358-y |
[2] |
LIU W, LIU J, TRIPLETT L, LEACH J E, WANG G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 2014, 52:213-241.
doi: 10.1146/phyto.2014.52.issue-1 |
[3] |
AGRAWAL G K, JWA N S, RAKWAL R. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochemical and Biophysical Research Communications, 2000, 274(1):157-165.
doi: 10.1006/bbrc.2000.3114 |
[4] |
NEELAM K, MAHAJAN R, GUPTA V, BHATIA D, GILL B K, KOMAL R, LORE J S, MANGAT G S, SINGH K. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theoretical and Applied Genetics, 2020, 133(3):689-705.
doi: 10.1007/s00122-019-03501-2 |
[5] | JI Z, WANG C, ZHAO K. Rice routes of countering Xanthomonas oryzae. International Journal of Molecular Sciences, 2018, 19(10):3008-3022. |
[6] |
LUO D, HUGUET-TAPIA J C, RABORN R T, WHITE F F, BRENDEL V P, YANG B. The Xa7 resistance gene guards the rice susceptibility gene SWEET14 against exploitation by the bacterial blight pathogen. Plant Communications, 2021, 2(3):100164-100188.
doi: 10.1016/j.xplc.2021.100164 |
[7] |
SONG W Y, WANG G L, CHEN L L, KIM H S, PI L Y, HOLSTEN T, GARDNER J, WANG B, ZHAI W X, ZHU L H, FAUQUET C, RONALD P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243):1804-1806.
doi: 10.1126/science.270.5243.1804 |
[8] | SONG W Y, PI L Y, WANG G L, GARDNER J, HOLSTEN T, RONALD P C. Evolution of the rice Xa21 disease resistance gene family. The Plant Cell, 1997, 9(8):1279-1287. |
[9] | CHEN X, CHERN M, CANLAS P E, RUAN D, JIANG C, RONALD P C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17):8029-8034. |
[10] |
PARK C J, HAN S W, CHEN X, RONALD P C. Elucidation of XA21-mediated innate immunity. Cell Microbiology, 2010, 12(8):1017-1025.
doi: 10.1111/j.1462-5822.2010.01489.x |
[11] |
VO K T X, KIM C Y, HOANG T V, LEE S K, SHIRSEKAR G, SEO Y S, LEE S W, WANG G L, JEON J S. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice. Frontiers in Plant Science, 2018, 8:2220-2233.
doi: 10.3389/fpls.2017.02220 |
[12] | LUU D D, JOE A, CHEN Y, PARYS K, BAHAR O, PRUITT R, CHAN L J G, PETZOLD C J, LONG K, ADAMCHAK C, STEWART V, BELKHADIR Y, RONALD P C. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17):8525-8534. |
[13] |
PENG Y, BARTLEY L E, CHEN X, DARDICK C, CHERN M, RUAN R, CANLAS P E, RONALD P C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Molecular Plant, 2008, 1(3):446-458.
doi: 10.1093/mp/ssn024 |
[14] |
PARK C J, PENG Y, CHEN X, DARDICK C, RUAN D, BART R, CANLAS P E, RONALD P C. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biology, 2008, 6(9):e231.
doi: 10.1371/journal.pbio.0060231 |
[15] |
PARK C J, BART R, CHERN M, CANLAS P E, BAI W, RONALD P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS ONE, 2010, 5(2):e9262.
doi: 10.1371/journal.pone.0009262 |
[16] |
WANG Y S, PI L Y, CHEN X, CHAKRABARTY P K, JIANG J, DE LEON A L, LIU G Z, LI L, BENNY U, OARD J, RONALD P C, SONG W Y. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. The Plant Cell, 2006, 18(12):3635-3646.
doi: 10.1105/tpc.106.046730 |
[17] |
PARK C J, WEI T, SHARMA R, RONALD P C. Overexpression of rice auxilin-like protein, XB21, induces necrotic lesions, up-regulates endocytosis-related genes, and confers enhanced resistance to Xanthomonas oryzae pv. oryzae. Rice, 2017, 10(1):27-38.
doi: 10.1186/s12284-017-0166-1 |
[18] |
JIANG Y, CHEN X, DING X, WANG Y, CHEN Q, SONG W Y. The XA21 binding protein XB25 is required for maintaining XA21- mediated disease resistance. The Plant Journal, 2013, 73(5):814-823.
doi: 10.1111/tpj.2013.73.issue-5 |
[19] |
HU H, WANG J, SHI C, YUAN C, PENG C, YIN J, LI W, HE M, WANG J, MA B, WANG Y, LI S, CHEN X. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance. Rice, 2015, 8(1):34-42.
doi: 10.1186/s12284-015-0069-y |
[20] |
CHEN X, ZUP S, SCHWESSINGER B, CHERN M, CANLAS P E, RUAN D, ZHOU X, WANG J, DAUDI A, PETZOLD C J, HEAZLEWOOD J L, RONALD P C. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Molecular Plant, 2014, 7(5):874-892.
doi: 10.1093/mp/ssu003 |
[21] |
QIU D, XIAO J, DING X, XIONG M, CAI M, CAO Y, LI X, XU C, WANG S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. Molecular Plant-Microbe Interactions, 2007, 20(5):492-499.
doi: 10.1094/MPMI-20-5-0492 |
[22] |
CHOI C, HWANG S H, FANG I R, KWON S I, PARK S R, AHN I, KIM J B, HWANG D J. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR)10a promoter and confers reduced susceptibility to pathogens. The New Phytologist, 2015, 208(3):846-859.
doi: 10.1111/nph.2015.208.issue-3 |
[23] |
SON S, AN H K, SEOL Y J, PARK S R, IM J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae. Biochemical and Biophysical Research Communications, 2020, 533(4):1262-1268.
doi: 10.1016/j.bbrc.2020.09.141 |
[24] |
WANG G, DING X, YUAN M, QIU D, LI X, XU C, WANG S. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Molecular Biology, 2006, 60(3):437-449.
doi: 10.1007/s11103-005-4770-x |
[25] |
WANG H, MENG J, PENG X, TANG X, ZHOU P, XIANG J, DENG X. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight. Plant Molecular Biology, 2015, 89(1/2):157-171.
doi: 10.1007/s11103-015-0360-8 |
[26] |
MEI C, QI M, SHENG G, YANG Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 2006, 19(10):1127-1137.
doi: 10.1094/MPMI-19-1127 |
[27] | WU Q, HOU M M, LI L Y, LIU L J, HOU Y X, LIU G Z. Induction of pathogenesis-related proteins in rice bacterial blight resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. Journal of Plant Pathology, 2011, 93(2):455-459. |
[28] |
CHEN Q, HUANG X, CHEN X, SHAMSUNNAHE R, SONG W Y. Reversible activation of XA21-mediated resistance by temperature. European Journal of Plant Pathology, 2018, 153(4):1177-1184.
doi: 10.1007/s10658-018-01634-6 |
[29] | 燕高伟. 水稻病程相关蛋白质OsPR1A在白叶枯病抗性反应中的功能研究[D]. 保定: 河北农业大学, 2020. |
YAN G W. The functional analysis of rice pathogenesis-related protein OsPR1A in bacterial leaf blight resistance response[D]. Baoding: Hebei Agricultural University, 2020. (in Chinese) | |
[30] | 陈悦, 王田幸子, 杨烁, 张彤, 马金姣, 燕高伟, 刘玉晴, 周艳, 史佳楠, 兰金苹, 魏健, 窦世娟, 刘丽娟, 杨明, 李莉云, 刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性. 中国农业科学, 2019, 52(12):2021-2032. |
CHEN Y, WANG T X Z, YANG S, ZHANG T, MA J J, YAN G W, LIU Y Q, ZHOU Y, SHI J N, LAN J P, WEI J, DOU S J, LIU L J, YANG M, LI L Y, LIU G Z. Expression profiling and functional characterization of rice transcription factor OsWRKY68. Scientia Agricultura Sinica, 2019, 52(12):2021-2032. (in Chinese) | |
[31] |
LI X, HUI B, WANG X, LI L, CAO Y, JIAN W, LIU Y, LIU L, GONG X, LIN W. Identification and validation of rice reference proteins for western blotting. Journal of Experimental Botany, 2011, 62(14):4763-4772.
doi: 10.1093/jxb/err084 |
[32] | ALI S, GANAI B A, KAMILI A N, BHAT A A, MIR Z A, BHAT J A, TYAGI A, ISLAM S T, MUSHTAQ M, YADAV P, RAWAT S, GROVER A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 2018(212/213):29-37. |
[33] | LOON L C V, KAMMEN A V. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 1970, 40(2):190-211. |
[34] |
BOL J F, LINTHORST H J M, CORNELISSEN B J C. Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology, 1990, 28(1):113-138.
doi: 10.1146/phyto.1990.28.issue-1 |
[35] |
NIDERMAN T, GENETET I, BRUYERE T, GEES R, STINTZI A, LEGRANG M, FRITIG B, MOSINGER E. Pathogenesis-related PR-1 proteins are antifungal. Plant Physiology, 1995, 108(1):17-27.
doi: 10.1104/pp.108.1.17 |
[36] |
VAN LOON L C, REP M, PIETERSE C M. Significance of inducible defense related proteins in infected plants. Annual Review of Phytopathology, 2006, 44:135-162.
doi: 10.1146/phyto.2006.44.issue-1 |
[37] |
SELS J, MATHYS J, DE CONINCK B M, CAMMUE B P, DE BOLLE M F. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, 2008, 46(11):941-950.
doi: 10.1016/j.plaphy.2008.06.011 |
[38] | 窦世娟, 关明俐, 李莉云, 刘国振. 水稻的病程相关基因. 中国科学通报, 2014, 59(3):245-258. |
DOU S J, GUAN M L, LI L Y, LIU G Z. Pathogenesis-related genes in rice. Chinese Science Bulletin, 2014, 59(3):245-258. (in Chinese) | |
[39] |
AGRAWAL G K, RAKWAL R, JWA N S, AGRAWAL V P. Signalling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defence/stress response. Plant Physiology and Biochemistry, 2001, 39(12):1095-1103.
doi: 10.1016/S0981-9428(01)01333-X |
[40] | DAL DEGAN F, ROCHER A, CAMERON-MILLS V, VON WETTSTEIN D. The expression of serine carboxypeptidases during maturation and germination of the barley grain. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(17):8209-8213. |
[41] |
LI Y, FAN C, XING Y, JIANG Y, LUO L, SUN L, SHAO D, XU C, LI X, XIAO J, HE Y, ZHANG Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12):1266-1269.
doi: 10.1038/ng.977 |
[42] | XU P, JIANG L, WU J, LI W, ZHANG S. Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Molecular Biology Reports, 2015, 10(6):4899-4909. |
[43] | LI J, LEASE K A, TAX F E, WALKER J C. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(10):5916-5921. |
[44] |
MUGFORD S T, QI X, BAKHT S, HILL L, WEGEL E, HUGHES R K, PAPADOPOULOU K, MELTON R, PHILO M, SAINSBURY F, LOMONOSSOFF G P, ROY A D, GOSS R J, OSBOURN A. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. The Plant Cell, 2009, 21(8):2473-2484.
doi: 10.1105/tpc.109.065870 |
[45] |
BONTPART T, FERRERO M, KHATER F, MARLIN T, VIAlET S, VALLVERDU-QUERALT A, PINASSEAU L, AGEORGES A, CHEYNIER V, TERRIER N. Focus on putative serine carboxypeptidase- like acyltransferases in grapevine. Plant Physiology and Biochemistry, 2018, 130:356-366.
doi: 10.1016/j.plaphy.2018.07.023 |
[46] |
WOLF A E, DIETZ K J, SCHRODER P. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters, 1996, 384(1):31-34.
doi: 10.1016/0014-5793(96)00272-4 |
[47] |
LI Z, TANG L, QIU J, ZHANG W, WANG Y, TONG X, WEI X, HOU Y, ZHANG J. Serine carboxypeptidase 46 regulates grain filling and seed germination in rice (Oryza sativa L.). PLoS ONE, 2016, 11(7):e0159737.
doi: 10.1371/journal.pone.0159737 |
[48] |
CENTURY K S, LAGMAN R A, ADKISSON M, MORLAN J, TOBIAS R, SCHWARTZ K, SMITH A, LOVE J, RONALD P C, WHALEN M C. Short communication: Developmental control of Xa21-mediated disease resistance in rice. The Plant Journal, 1999, 20(2):231-236.
doi: 10.1046/j.1365-313x.1999.00589.x |
[49] |
PRUITT R N, SCHWESSINGER B, JOE A, THOMAS N, LIU F, ALBERT M, ROBINSON M R, CHAN L J, LUU D D, CHEN H, BAHAR O, DAUDI A, DE VLEESSCHAUWER D, CADDELL D, ZHANG W, ZHAO X, LI X, HEAZLEWOOD J L, RUAN D, MAJUMDER D, CHERN M, KALBACHER H, MIDHA S, PATIL P B, SONTI R V, PETZOLD C J, LIU C C, BRODBELT J S, FELIX G, RONALD P C. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1(6):e1500245.
doi: 10.1126/sciadv.1500245 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|