中国农业科学 ›› 2021, Vol. 54 ›› Issue (22): 4906-4916.doi: 10.3864/j.issn.0578-1752.2021.22.016
张兰1(),王良治1,2,黄艳玲1(),廖秀冬2,张丽阳2,吕林2(),罗绪刚3
收稿日期:
2020-10-13
接受日期:
2021-04-12
出版日期:
2021-11-16
发布日期:
2021-11-19
通讯作者:
黄艳玲,吕林
作者简介:
张兰,Tel:18437987790;E-mail: 基金资助:
ZHANG Lan1(),WANG LiangZhi1,2,HUANG YanLing1(),LIAO XiuDong2,ZHANG LiYang2,LÜ Lin2(),LUO XuGang3
Received:
2020-10-13
Accepted:
2021-04-12
Online:
2021-11-16
Published:
2021-11-19
Contact:
YanLing HUANG,Lin LÜ
摘要:
【目的】研究饲粮微量元素不同添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响,探寻肉仔鸡饲粮中微量元素平衡模式,为饲粮中合理添加微量元素提供试验依据。【方法】采用单因子完全随机设计,选取240只1日龄AA肉仔鸡,按体重随机分为5组,每组6个重复,每个重复8只。在玉米-豆粕型基础饲粮中分别按不同模式添加微量元素:按照NRC(1994)肉鸡推荐量以无机形式添加微量元素(T1,1—42日龄铜、铁、锰、锌和硒添加量分别为8、80、60、40 和 0.15 mg·kg-1);按照中国鸡饲养标准(农业行业标准NY/T 33-2004)中肉鸡推荐量以无机形式添加微量元素(T2,1—21日龄铜、铁、锰、锌和硒添加量分别为8、100、120、100和0.3 mg·kg-1;22—42日龄添加量分别为8、80、120、80和0.3 mg·kg-1);按照课题组前期微量元素需要量研究结果以无机形式添加微量元素(T3,1—21日龄铜、铁、锰、锌和硒添加量分别为4、40、110、60和0.35 mg·kg-1;22—42日龄添加量分别为0、30、80、40和0.35 mg·kg-1);按照实验室前期结果以有机形式减量添加微量元素(T4,1—21日龄铜、铁、锰、锌和硒添加量分别为2、30、80、40和0.25 mg·kg-1;22—42日龄添加量分别为0、15、50、30和0.25 mg·kg-1);按照NY/T 33-2004中肉鸡推荐量以有机形式添加微量元素(T5,1-21和22-42日龄铜、铁、锰、锌和硒添加量同T2)。无机微量元素源分别为饲料级五水硫酸铜、一水硫酸亚铁、一水硫酸锰、一水硫酸锌和亚硒酸钠,有机微量元素源分别为饲料级蛋氨酸铜、甘氨酸铁、蛋氨酸锰、甘氨酸锌和酵母硒。试验期42d。【结果】微量元素添加模式对肉仔鸡平均日采食量、平均日增重均无显著影响(P>0.05); T2组的22—42日龄料重比显著高于T1、T4和T5组(P<0.05),而T2与T3组无显著差异(P>0.05); T2组的1-42日龄料重比显著高于其他组(P<0.05),而其他各组之间差异不显著(P>0.05)。42日龄肉仔鸡胴体性能及胸肌和腿肌的L*值、a*值、pH和滴水损失均不受微量元素添加模式影响(P>0.05),但T5组的胸肌b*值显著高于T1和T3组(P<0.05),而与T4组无显著差异(P>0.05);T4组的腿肌剪切力显著低于T1和T5组(P<0.05),肌肉嫩度相对较好。【结论】本试验条件下,在玉米-豆粕型饲粮中减量添加有机微量元素(T4, 1—21日龄铜、铁、锰、锌和硒添加量分别为2、30、80、40和0.25 mg·kg-1;22—42日龄添加量分别为0、15、50、30和0.25 mg·kg-1)对肉仔鸡生长性能和肌肉品质的作用效果较好。
张兰,王良治,黄艳玲,廖秀冬,张丽阳,吕林,罗绪刚. 饲粮微量元素添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响[J]. 中国农业科学, 2021, 54(22): 4906-4916.
ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers[J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
表1
基础饲粮的组成及营养水平(饲喂基础)"
原料Ingredients | 1-21 d (%) | 22-42 d (%) | 营养水平Nutrient levels | 1-21 d | 22-42 d | |
---|---|---|---|---|---|---|
玉米 Corn | 52.64 | 53.39 | 代谢能 ME(Kcal·kg-1)3) | 3008 | 3062 | |
豆粕 Soybean meal | 38.79 | 36.40 | 粗蛋白 CP4) | 21.60 | 19.69 | |
大豆油 Soybeal oil | 4.80 | 6.60 | 能蛋比 E/P(Kcal·g-1)3) | 139.30 | 155.50 | |
磷酸氢钙 CaHPO41) | 1.52 | 1.36 | 赖氨酸 Lys3) | 1.15 | 1.04 | |
石粉 Limestone1) | 1.40 | 1.35 | 蛋氨酸 Met3) | 0.59 | 0.45 | |
食盐 NaCl1) | 0.30 | 0.30 | 蛋氨酸+胱氨酸 Met+Cys3) | 0.82 | 0.75 | |
D-蛋氨酸 DL-Met1) | 0.30 | 0.14 | 钙 Ca4) | 0.98 | 0.90 | |
预混料 Premix2) | 0.25 | 0.16 | 非植酸磷 NP3) | 0.39 | 0.31 | |
玉米淀粉 Corn starch | 0.30 | 0.30 | ||||
合计 Total | 100 | 100 |
表2
试验饲粮中微量元素的添加水平和实测水平"
处理组 Treatment | 微量元素来源 Trace element sources | 添加水平 Added levels (mg·kg-1) | 实测水平1) Analyzed levels (mg·kg-1) | ||
---|---|---|---|---|---|
1-21 d | 22-42 d | 1-21 d | 22-42 d | ||
T1 | 五水硫酸铜 (Cu sulfate pentahydrate) | 8 | 8 | 11.99 | 10.97 |
一水硫酸亚铁 (Fe sulfate monohydrate) | 80 | 80 | 229.41 | 192.76 | |
一水硫酸锰 (Mn sulfate monohydrate) | 60 | 60 | 80.54 | 80.36 | |
一水硫酸锌 (Zn sulphate monohydrate) | 40 | 40 | 77.85 | 73.26 | |
亚硒酸钠 (Sodium selenite) | 0.15 | 0.15 | 0.24 | 0.22 | |
T2 | 五水硫酸铜 (Cu sulfate pentahydrate) | 8 | 8 | 13.93 | 11.19 |
一水硫酸亚铁 (Fe sulfate monohydrate) | 80 | 80 | 233.71 | 193.74 | |
一水硫酸锰 (Mn sulfate monohydrate) | 120 | 120 | 139.42 | 139.56 | |
一水硫酸锌 (Zn sulphate monohydrate) | 100 | 80 | 139.33 | 117.54 | |
亚硒酸钠 (Sodium selenite) | 0.30 | 0.30 | 0.35 | 0.38 | |
T3 | 五水硫酸铜 (Cu sulfate pentahydrate) | 4 | 0 | 8.41 | 3.16 |
一水硫酸亚铁 (Fe sulfate monohydrate) | 40 | 30 | 181.51 | 143.79 | |
一水硫酸锰 (Mn sulfate monohydrate) | 110 | 80 | 137.05 | 99.37 | |
一水硫酸锌 (Zn sulphate monohydrate) | 60 | 40 | 100.34 | 71.58 | |
亚硒酸钠 (Sodium selenite) | 0.35 | 0.35 | 0.41 | 0.42 | |
T4 | 蛋氨酸铜 (Cu mothionine) | 2 | 0 | 6.21 | 3.16 |
甘氨酸铁 (Fe glycine) | 30 | 15 | 165.29 | 130.26 | |
蛋氨酸锰 (Mn methionine) | 80 | 50 | 109.82 | 76.97 | |
甘氨酸锌 (Zn glycinate) | 40 | 30 | 81.45 | 64.73 | |
酵母硒 (Se yeast) | 0.25 | 0.25 | 0.31 | 0.33 | |
T5 | 蛋氨酸铜 (Cu mothionine) | 8 | 8 | 12.67 | 11.41 |
甘氨酸铁 (Fe glycine) | 100 | 80 | 250.81 | 192.88 | |
蛋氨酸锰 (Mn methionine) | 120 | 120 | 146.68 | 149.22 | |
甘氨酸锌 (Zn glycinate) | 100 | 80 | 142.29 | 114.94 | |
酵母硒 (Se yeast) | 0.30 | 0.30 | 0.38 | 0.37 |
表3
微量元素添加模式对肉仔鸡生长性能的影响1)"
处理 Treatment | 1-21 d | 22-42 d | 1-42 d | ||||||
---|---|---|---|---|---|---|---|---|---|
ADG (g·d-1) | ADFI (g·d-1) | F/G | ADG (g·d-1) | ADFI (g·d-1) | F/G | ADG (g·d-1) | ADFI (g·d-1) | F/G | |
T1 | 44.74 | 34.84 | 1.28 | 142.67 | 81.39 | 1.75b | 93.71 | 58.11 | 1.61b |
T2 | 42.77 | 33.33 | 1.28 | 149.92 | 79.27 | 1.90a | 96.34 | 56.30 | 1.71a |
T3 | 42.44 | 35.65 | 1.19 | 142.54 | 79.85 | 1.79ab | 92.49 | 57.75 | 1.60b |
T4 | 40.85 | 33.82 | 1.21 | 139.84 | 80.62 | 1.74b | 90.34 | 57.22 | 1.58b |
T5 | 42.15 | 34.36 | 1.23 | 146.36 | 82.22 | 1.78b | 94.25 | 58.29 | 1.62b |
集合标准误 Pooled SE | 1.70 | 0.70 | 0.04 | 3.02 | 2.20 | 0.04 | 1.90 | 1.20 | 0.03 |
P值 P value | 0.5855 | 0.2120 | 0.4404 | 0.1855 | 0.8882 | 0.0481 | 0.2683 | 0.7924 | 0.0098 |
表4
微量元素添加模式对肉仔鸡胴体性能的影响"
处理 Treatment | 屠宰率 Carcass rate | 全净膛率 Full evisceration rate | 腹脂率 Abdominal fat rate | 胸肌率 Breast rate | 腿肌率 Thigh rate |
---|---|---|---|---|---|
T1 | 92.66 | 74.85 | 1.23 | 27.98 | 22.93 |
T2 | 92.75 | 74.64 | 1.36 | 27.64 | 22.88 |
T3 | 93.23 | 74.24 | 1.57 | 27.20 | 23.17 |
T4 | 93.11 | 74.98 | 1.30 | 26.36 | 22.72 |
T5 | 93.69 | 73.96 | 1.34 | 25.85 | 23.87 |
集合标准误 Pooled SE | 0.33 | 0.44 | 0.10 | 0.58 | 0.60 |
P值 P value | 0.2055 | 0.4572 | 0.3897 | 0.0789 | 0.7450 |
表5
微量元素添加模式对胸肌肉品质的影响"
处理 Treatment | pH45min | pH24h | 亮度 L* | 红度 a* | 黄度 b* | 剪切力 Shear force (N) | 滴水损失 Drip loss (%) |
---|---|---|---|---|---|---|---|
T1 | 6.55 | 6.09 | 35.92 | 7.63 | 5.02bc | 43.97 | 19.20 |
T2 | 6.55 | 6.12 | 34.36 | 8.88 | 6.58ab | 39.19 | 16.54 |
T3 | 6.62 | 6.11 | 34.62 | 7.42 | 4.49bc | 40.51 | 12.85 |
T4 | 6.48 | 6.16 | 34.36 | 8.50 | 5.94abc | 44.14 | 12.33 |
T5 | 6.50 | 6.14 | 33.19 | 9.38 | 6.75a | 39.88 | 15.12 |
集合标准误 Pooled SE | 0.04 | 0.06 | 2.42 | 0.61 | 0.53 | 3.66 | 1.92 |
P值 P value | 0.2468 | 0.9484 | 0.9557 | 0.1556 | 0.0215 | 0.7983 | 0.1062 |
表6
微量元素添加模式对腿肌肉品质的影响"
处理 Treatment | pH45min | pH24h | 亮度 L* | 红度 a* | 黄度 b* | 剪切力 Shear force (N) | 滴水损失 Drip loss (%) |
---|---|---|---|---|---|---|---|
T1 | 6.53 | 5.66 | 33.43 | 8.97 | 6.42 | 37.36ab | 12.22 |
T2 | 6.27 | 5.65 | 36.07 | 8.24 | 5.86 | 29.86bc | 12.10 |
T3 | 6.56 | 5.67 | 35.16 | 8.38 | 5.40 | 35.02abc | 12.82 |
T4 | 6.51 | 5.70 | 35.53 | 8.44 | 6.09 | 26.18c | 9.35 |
T5 | 6.50 | 5.72 | 36.35 | 9.41 | 7.23 | 40.67a | 11.02 |
集合标准误 Pooled SE | 0.092 | 0.035 | 2.542 | 0.540 | 0.538 | 3.354 | 1.909 |
P值P value | 0.1995 | 0.7189 | 0.9337 | 0.5252 | 0.1996 | 0.0377 | 0.7272 |
[1] |
SAMANTA B, GHOSH P R, BISWAS A, DAS SK. The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian Australasian Journal of Animal Sciences, 2011, 24(7): 1001-1006. doi: 10.5713/ajas.2011.10394.
doi: 10.5713/ajas.2011.10394 |
[2] |
吴信, 孟田田, 万丹, 谢春艳, 印遇龙. 硒在畜禽养殖中的应用研究进展. 生物技术进展, 2017, 7(5): 428-432. doi: 10.19586/j.2095-2341.2017.0092.
doi: 10.19586/j.2095-2341.2017.0092 |
WU X, MENG T T, WAN D, XIE C Y, YIN Y L. Advance on application of selenium in livestock and poultry. Progress in Biotechnology, 2017, 7(5): 428-432. doi: 10.19586/j.2095-2341.2017.0092. (in Chinese)
doi: 10.19586/j.2095-2341.2017.0092 |
|
[3] |
ROYCHOUDHURY S, NATH S, MASSANYI P, STAWARZ R, KACANIOVA M, KOLESAROVA A. Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiological Research, 2016, 65(1): 11-22. doi: 10.33549/physiolres.933063.
doi: 10.33549/physiolres.933063 |
[4] |
吴小玲, 石建凯, 张攀, 吴徳, 徐盛玉. 硒对母猪繁殖性能的影响及其作用机制. 动物营养学报, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006-267x.2018.02.006.
doi: 10.3969/j.issn.1006-267x.2018.02.006 |
WU X L, SHI J K, ZHANG P, WU D, XU S Y. Effects of Selenium on reproductive performance of sows and its mechanism. Chinese Journal of Animal Nutrition, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006-267x.2018.02.006. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2018.02.006 |
|
[5] |
OGNIK K, SEMBRATOWICZ I, CHOLEWIŃSKA E, JANKOWSKI J, KOZŁOWSKI K, JUŚKIEWICZ J, ZDUŃCZYK Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal, 2018, 89(3): 579-588. doi: 10.1111/asj.12956.
doi: 10.1111/asj.12956 |
[6] |
LINDER M C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8(9): 887-905. doi: 10.1039/c6mt00103c.
doi: 10.1039/c6mt00103c |
[7] |
YAMADA H, YASUNOBU K T. Monoamine oxidase. II. Copper, one of the prosthetic groups of plasma monoamine oxidase. Journal of Biological Chemistry, 1962, 237(10): 3077-3082.
doi: 10.1016/S0021-9258(18)50124-1 |
[8] |
WANG W, DI X, D'AGOSTINO R B, TORTI S V, TORTI F M. Excess capacity of the iron regulatory protein system. The Journal of Biological Chemistry, 2007, 282(34): 24650-24659. doi: 10.1074/jbc.m703167200.
doi: 10.1074/jbc.m703167200 |
[9] |
CRICHTON R R, CHARLOTEAUX W M. Iron transport and storage. European Jounal of Biochemity, 1987, 164(3), 485-506. doi: 10.1146/annurev.bi.49.070180.002041.
doi: 10.1146/annurev.bi.49.070180.002041 |
[10] |
COLEMAN J E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Canada Communicable Disease Report, 1992, 61: 897-946. doi: 10.1146/annurev.bi.61.070192.004341.
doi: 10.1146/annurev.bi.61.070192.004341 |
[11] |
李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75. doi: 10.12008/j.issn.1009-2196.2020.02.011.
doi: 10.12008/j.issn.1009-2196.2020.02.011 |
LI L, DING F, PAN J C, ZHANG S W, HUANG X, WANG J Y, WANG Y, LI H R, XU J Z, PENG H X, HE X H. Research progress on family of plant zinc-finger protein transcription factors. Chinese Journal of Tropical Agriculture, 2020, 40(2): 65-75. doi: 10.12008/j.issn.1009-2196.2020.02.011(in Chinese)
doi: 10.12008/j.issn.1009-2196.2020.02.011 |
|
[12] |
BOGENHAGEN D F, WORMINGTON W M, BROWN D D. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Molecular Plant Pathology, 1982, 28(2): 413-421. doi: 10.1016/0092-8674(82)90359-2.
doi: 10.1016/0092-8674(82)90359-2 |
[13] |
LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 2014, 94(3): 739-777. doi: 10.1152/physrev.00039.2013.
doi: 10.1152/physrev.00039.2013 |
[14] |
雷新根, 赵华, 周继昌. 哺乳动物硒蛋白研究进展//中国畜牧兽医学会动物营养学分会学术研讨会, 2008: 23-32. doi: 0.19586/j.2095-2341.2017.0092.
doi: 0.19586/j.2095-2341.2017.0092 |
LEI X G, ZHAO H, ZHOU J C. Research advances on mammalian selenoproteins//Animal Nutrition Branch of China Institute of Animal Husbandry and Veterinary Medicine, 2008: 23-32. doi: 0.19586/j.2095-2341.2017.0092. (in Chinese)
doi: 0.19586/j.2095-2341.2017.0092 |
|
[15] |
汤小朋, 陈磊, 熊康宁, 杭红涛. 硒蛋白—哺乳动物谷胱甘肽过氧化物酶家族研究进展. 生命的化学, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168.
doi: 10.13488/j.smhx.20190168 |
TANG X P, CHEN L, XIONG K N, HANG H T. Research progress of selenoprotein-mammalian glutathione peroxidases family. Chemistry of Life, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168. (in Chinese)
doi: 10.13488/j.smhx.20190168 |
|
[16] | 任孝军, 刘若兰, 牛欢, 李艳纯, 谭国强, 吕建新. 锌的生物学功能及高浓度锌对铁硫蛋白的影响. 中国细胞生物学学报, 2017(5): 639-648. |
REN X J, LIU R L, NIU H, LI Y C, TAN G Q, (LÜ/LV/LU/LYU) J X. Biological functions of zinc and the impact of high zinc levels on iron-sulfur proteins. Chinese Journal of Cell Biology, 2017(5): 639-648. (in Chinese) | |
[17] |
高庆, 张克英, 陈代文. 日粮微量元素对基因表达的影响. 中国畜牧兽医, 2004, 31(3): 12-15. doi: 10.3969/j.issn.1671-7236.2004.03.005.
doi: 10.3969/j.issn.1671-7236.2004.03.005 |
GAO Q, ZHANG K Y, CHEN D W. Influence of trace minerals in ration on gene expression. China Animal Husbandry & Veterinary Medicine, 2004, 31(3): 12-15. doi: 10.3969/j.issn.1671-7236.2004.03.005. (in Chinese)
doi: 10.3969/j.issn.1671-7236.2004.03.005 |
|
[18] |
朱志兀, 姚琳. 铜离子稳态平衡分子机理研究进展. 生命科学, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022.
doi: 10.13376/j.cbls/2012.08.022 |
ZHU Z W, YAO L. Research progress in investigating the molecular mechanism of copper homeostasis. Chinese Bulletin of Life Sciences, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022. (in Chinese)
doi: 10.13376/j.cbls/2012.08.022 |
|
[19] | NACAMULLI D, MIAN C, PETRICCA D, LAZZAROTTO F, BAROLLO S, POZZA D, MASIERO S, FAGGIAN D, PLEBANI M, GIRELLI M E, MANTERO F, BETTERLE C. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clinical Endocrinology, 2010, 73(4): 535-539. |
[20] |
ZHAO C Y, TAN S X, XIAO X Y, QIU X S, PAN J Q, TANG Z X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 2014, 160(3): 361-367. doi: 10.1007/s12011-014-0052-2.
doi: 10.1007/s12011-014-0052-2 |
[21] |
薛梅, 昝林森. 日粮中锌含量和来源对肉鸡生产性能、氧化还原和免疫状态的影响. 中国饲料, 2019(20): 75-80. doi: 10.15906/j.cnki.cn11-2975/s.20192017.
doi: 10.15906/j.cnki.cn11-2975/s.20192017 |
XUE M, ZAN L S. Effects of dietary zinc contents and sources on growth performance, oxidation-reduction and immune status of broilers. China Feed, 2019(20): 75-80. doi: 10.15906/j.cnki.cn11-2975/s.20192017. (in Chinese)
doi: 10.15906/j.cnki.cn11-2975/s.20192017 |
|
[22] |
DOZIER W A, DAVIS A J, FREEMAN M E, WARD T L. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks. British Poultry Science, 2003, 44(5): 726-731. doi: 10.1080/00071660310001643714.
doi: 10.1080/00071660310001643714 |
[23] |
BURRELL A L, DOZIER W A, DAVIS A J, COMPTON M M, FREEMAN M E, VENDRELL P F, WARD T L. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science, 2004, 45(2): 255-263. doi: 10.1080/00071660410001715867.
doi: 10.1080/00071660410001715867 |
[24] |
符臻鸣, 杨海明, 顾海洋, 刘金河. 锌在蛋鸡生产中的研究进展. 家畜生态学报, 2019(11): 6-11, 44. doi: 10.3969/j.issn.1673-1182.2019.11.002.
doi: 10.3969/j.issn.1673-1182.2019.11.002 |
FU Z M, YANG H M, GU H Y, LIU J H. Research progress on zinc in laying hens production. Journal of Domestic Animal Ecology, 2019(11): 6-11, 44. doi: 10.3969/j.issn.1673-1182.2019.11.002. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2019.11.002 |
|
[25] |
STANDISH J F, AMMERMAN C B, PALMER A Z, SIMPSON C F. Influence of dietary iron and phosphorus on performance, tissue mineral composition and mineral absorption in steers. Journal of Animal Science, 1971, 33(1): 171-178. doi: 10.2527/jas1971.331171x.
doi: 10.2527/jas1971.331171x |
[26] | 方升林. 过量铁对机体损伤效应及其诱导细胞死亡的机制研究[D]. 杭州: 浙江大学, 2018. |
FANG S L. The damage effects of excessive Iron and the mechanism of iron-induced cell death[D]. Hangzhou: Zhejiang University, 2018. (in Chinese) | |
[27] |
WANG Z N, CERRATE S, YAN F L, SACAKLI P, WALDROUP P. Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion. International Journal of Poultry Science, 2008, 7(7): 625-629.
doi: 10.3923/ijps.2008.625.629 |
[28] |
田佳, 刘国华, 蔡辉益, 常文环, 张姝, 刘伟. 22~42日龄肉鸡铜、铁、锌、锰不同用量组合的研究. 动物营养学报, 2016, 28(11): 3660-3668. doi: 10.3969/j.issn.1006-267x.2016.11.036.
doi: 10.3969/j.issn.1006-267x.2016.11.036 |
TIAN J, LIU G H, CAI H Y, CHANG W H, ZHANG S, LIU W. Research on different combination contents of Cu, Fe, Zn and Mn for boilers aged from 22 to 42 days. Chinese Journal of Animal Nutrition, 2016, 28(11): 3660-3668. doi: 10.3969/j.issn.1006-267x.2016.11.036. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.11.036 |
|
[29] |
ZHOU D M, HAO X Z, WANG Y J, DONG Y H, CANG L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere, 2005, 59(2): 167-175. doi: 10.1016/j.chemosphere.2004.11.008.
doi: 10.1016/j.chemosphere.2004.11.008 |
[30] |
ZHUO Z, FANG S L, HU Q L, HUANG D, FENG J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Scientific Reports, 2016, 6: 37923. doi: 10.1038/srep37923.
doi: 10.1038/srep37923 |
[31] |
沐建煜. 铁在动物生产中的应用进展. 饲料研究, 2020, 43(2): 119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.
doi: 10.13557/j.cnki.issn1002-2813.2020.02.030 |
MU J Y. Application progress of iron in animal production. Feed Research, 2020, 43(2): 119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030. (in Chinese)
doi: 10.13557/j.cnki.issn1002-2813.2020.02.030 |
|
[32] |
XIE C, ELWAN H A M, ELNESR S S, DONG X, FENG J, ZOU X T. Effects of iron Glycine chelate on laying performance, antioxidant activities, serum biochemical indices, iron concentrations and transferrin mRNA expression in laying hens. Journal of Animal Physiology and Animal Nutrition, 2019, 103(2): 547-554. doi: 10.1111/jpn.13061.
doi: 10.1111/jpn.13061 |
[33] |
VIEIRA R, FERKET P, MALHEIROS R, HANNAS M, CRIWELLARI R, MORAES V, ELLIOTT S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. British Poultry Science, 2020, undefined: 1-9. doi: 10.1080/00071668.2020.1764908.
doi: 10.1080/00071668.2020.1764908 |
[34] | NRC. Nutrient requirements of poultry (9th Ed). Washington, DC: National Academy Press, 1994. |
[35] |
BAO Y M, CHOCT P, BRUERTON K I. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 2007, 16: 448-455. doi: 10.1093/japr/16.3.448.
doi: 10.1093/japr/16.3.448 |
[36] | 中华人民共和国农业部. 鸡饲养标准(NY/T 33-2004). 北京: 中国农业出版社, 2004. |
The Ministry of Agriculture of the People's Republic of China. Breeding standard of chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004. (in Chinese) | |
[37] | 中华人民共和国农业部. 中华人民共和国农业行业标准NY/T823-2004《家禽生产性能名词术语和度量统计方法》. 中国禽业导刊, 2006, 23(15): 45-46. |
The Ministry of Agriculture of the People's Republic of China. Agricultural standards of the People's Republic of China. Terms and methods of measurement and statistics for poultry production performance (NY/T823-2004). Beijing: China Agriculture Press, 2005. (in Chinese) | |
[38] | 胡新旭, 范仕苓, 张建云, 陈文雅, 马秋刚, 计成. 生长前后期日粮添加肌肽对肉仔鸡生产性能、屠宰性能、肉品质和抗氧化性能的影响. 第十四届全国家禽科学学术讨论会论文集, 北京: 中国农业科学技术出版社, 2009, 876-886. |
HU X X, FAN S L, ZHANG J Y, CHEN W Y, MA Q G, JI C. Effect of dietary supplement of carnosine on the production performance, carcass traits, meat quality and antioxidative property of broiler chicks during the starter and grower period. Proceedings of the 14th National Symposium on Poultry Science. Beijing: China Agricultural Science and Technology Press, 2009, 876-886. (in Chinese) | |
[39] |
濮振宇, 辛洪亮, 余超, 王砀砀, 雷新宇, 姚军虎, 杨小军. 微量元素添加模式对肉鸡生长性能、微量元素代谢和血浆抗氧化性能的影响. 动物营养学报, 2016, 28(8): 2367-2377. doi: 10.3969/j.issn.1006-267x.2016.08.007.
doi: 10.3969/j.issn.1006-267x.2016.08.007 |
PU Z Y, XIN H L, YU C, WANG D D, LEI X Y, YAO J H, YANG X J. Effects of supplemental patterns of trace minerals on growth performance, trace mineral metabolism and plasma antioxidant ability in broilers. Chinese Journal of Animal Nutrition, 2016, 28(8): 2367-2377. doi: 10.3969/j.issn.1006-267x.2016.08.007. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.08.007 |
|
[40] |
LI S, LUO X, LIU B, YU S, KUANG X, SHAO X, CRENSHAW T D. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science, 2004, 82: 2352-2363. doi: 10.2527/2004.8282352x.
doi: 10.2527/2004.8282352x |
[41] |
GUO R, HENRY P R, HOLWERDA R A, CAO J, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. Journal of Animal Science, 2001, 79(5): 1132-1141. doi: 10.2527/2001.7951132x.
doi: 10.2527/2001.7951132x |
[42] |
CAO J, HENRY P R, GUO R, HOLWERDA R A, TOTH J P, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 2000, 78(8): 2039-2054. doi: 10.2527/2000.7882039x.
doi: 10.2527/2000.7882039x |
[43] |
M'SADEQ S A, WU S B, CHOCT M, SWICK R A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poultry Science, 2018, 97(9): 3176-3182. doi: 10.3382/ps/pey197.
doi: 10.3382/ps/pey197 |
[44] |
ZHU Z, YAN L, HU S, AN S, LV Z, WANG Z, WU Y, ZHU Y, ZHAO M, GU C, ZHANG A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Archives of Animal Nutrition, 2019, 73(4): 324-337. doi: 10.1080/1745039x.2019.1620050.
doi: 10.1080/1745039x.2019.1620050 |
[45] | MILES R D, HENRY P R. Relative trace mineral bioavailability. Ciência Animal Brasileira, 2006, 1(2): 73-93. |
[46] |
SIRRI F, MAIORANO G, TAVANIELLO S, CHEN J, PETRACCI M, MELUZZI A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 2016, 95(8): 1813-1824. doi: 10.3382/ps/pew064.
doi: 10.3382/ps/pew064 |
[47] | 王一冰, 王薇薇, 苟钟勇, 李龙, 林厦菁, 范秋丽, 叶金玲, 崔小燕, 蒋守群. 饲粮微量元素不同用量组合对黄羽肉鸡生产性能、胴体指标及肉品质的影响. 中国农业大学学报, 2020, 25(3): 60-70. |
WANG Y B, WANG W W, GOU Z Y, LI L, LIN X J, FAN Q L, YE J L, CUI X Y, JIANG S Q. Effects of different combinations of dietary trace elements on the growth performance, carcass trait and meat quality of yellow-feathered broilers. Journal of China Agricultural University, 2020, 25(3): 60-70. (in Chinese) | |
[48] |
李菁菁, 邓中勇, 杨朝武, 任鹏, 蒋小松, 王也, 刘益平. 旧院黑鸡屠宰性能及肉品质测定. 四川农业大学学报, 2017, 35(2): 256-259. doi: 10.16036/j.issn.1000-2650.2017.02.018.
doi: 10.16036/j.issn.1000-2650.2017.02.018 |
LI J J, DENG Z Y, YANG C W, REN P, JIANG X S, WANG Y, LIU Y P. The slaughtering performance and meat quality of Jiuyuan black fowls. Journal of Sichuan Agricultural University, 2017, 35(2): 256-259. doi: 10.16036/j.issn.1000-2650.2017.02.018. (in Chinese)
doi: 10.16036/j.issn.1000-2650.2017.02.018 |
|
[49] |
FANATICO A C, PILLAI P B, EMMERT J L, OWENS C M. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science, 2007, 86(10): 2245-2255. doi: 10.1093/ps/86.10.2245.
doi: 10.1093/ps/86.10.2245 |
[50] |
BARBUT S. Problem of pale soft exudative meat in broiler chickens. British Poultry Science, 1997, 38(4): 355-358. doi: 10.1080/00071669708418002.
doi: 10.1080/00071669708418002 |
[51] |
AKSU T, AKSU M İ, YORUK M A, KARAOGLU M. Effects of organically-complexed minerals on meat quality in chickens. British Poultry Science, 2011, 52(5): 558-563. doi: 10.1080/00071668.2011.606800.
doi: 10.1080/00071668.2011.606800 |
[52] |
徐日峰, 张煜, 胡建民, 杨建成. 影响鸡肉品质因素的研究进展. 江苏农业科学, 2013, 41(2): 183-184, 189. doi: 10.3969/j.issn.1002-1302.2013.02.071.
doi: 10.3969/j.issn.1002-1302.2013.02.071 |
XU R F, ZHANG Y, HU J M, YANG J C. Research progress of factors affecting meat quality. Jiangsu Agricultural Sciences, 2013, 41(2): 183-184, 189. doi: 10.3969/j.issn.1002-1302.2013.02.071. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.02.071 |
|
[53] |
GOLL D E, OTSUKA Y, NAGAINIS P A, SHANNON J D, SATHE S K. Role of muscle proteinases in maintenance of muscle integrity and mass. Food Biochemistry, 1983, 7(3): 137-177. doi: 10.1111/j.1745-4514.1983.tb00795.x.
doi: 10.1111/j.1745-4514.1983.tb00795.x |
[54] |
李明奇, 贺稚非, 李少博, 李冉冉, 李洪军. 氯化钙-无花果蛋白酶-猕猴桃蛋白酶复合嫩化剂体系改善兔肉嫩度和保水性的工艺优化. 食品与发酵工业, 2019, 45(18): 120-129. doi: 10.13995/j.cnki.11-1802/ts.021040.
doi: 10.13995/j.cnki.11-1802/ts.021040 |
LI M Q, HE Z F, LI S B, LI R R, LI H J. Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat. Food and Fermentation Industries, 2019, 45(18): 120-129. doi: 10.13995/j.cnki.11-1802/ts.021040. (in Chinese)
doi: 10.13995/j.cnki.11-1802/ts.021040 |
[1] | 车大璐,赵俐辰,程素彩,刘爱瑜,李晓宇,赵寿培,王健诚,王媛,高玉红,孙新胜. 垫料床对育肥羔羊生长性能和臭气排放的影响[J]. 中国农业科学, 2022, 55(24): 4943-4956. |
[2] | 宋淑珍, 高良霜, 李宏, 宫旭胤, 刘立山, 魏玉兵. 相对饲养水平对绵羊肌肉组织结构及肌纤维组成相关基因的影响[J]. 中国农业科学, 2022, 55(21): 4304-4314. |
[3] | 刘旺景,唐德富,敖长金. 沙葱及其提取物对小尾寒羊生产性能、胴体特征、肉品质和血清生化指标的影响[J]. 中国农业科学, 2022, 55(17): 3461-3472. |
[4] | 陈志敏,常文环,郑爱娟,蔡辉益,刘国华. 饲粮中添加膨化羽毛粉对肉鸡生长性能、屠宰性能和血清生化指标的影响[J]. 中国农业科学, 2022, 55(13): 2643-2653. |
[5] | 胡斐斐,钱书意,黄峰,姜薇,强宇,江峰,胡海梅,李侠,张春晖. 低压静电场辅助短期冻藏对猪肉品质的影响[J]. 中国农业科学, 2021, 54(9): 1993-2005. |
[6] | 王金飞,杨国义,樊子菡,刘旗,张鹏程,任有蛇,杨春合,张春香. 饲粮中全株玉米青贮比例对杜湖杂交母羔生长性能、瘤胃发酵、养分消化率及血清学指标的影响[J]. 中国农业科学, 2021, 54(4): 831-844. |
[7] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
[8] | 王晨,张宏伟,王虎成,孙晓萍,李发弟,杨博辉. 高山美利奴育成羊的能量与蛋白质需要量[J]. 中国农业科学, 2021, 54(16): 3537-3548. |
[9] | 黄文琴,吕小康,庄一民,崔凯,王世琴,刁其玉,张乃锋. 早期断奶和育肥期饲粮NDF水平对湖羊生长性能和消化代谢的影响[J]. 中国农业科学, 2021, 54(10): 2217-2228. |
[10] | 杨云燕,王其炎,彭地纬,潘一帆,高晓梅,宣泽义,陈少梅,邹彩霞,曹艳红,林波. 日粮添加肉桂醛对奶牛公犊生长、健康及瘤胃发酵性能的影响[J]. 中国农业科学, 2021, 54(10): 2229-2238. |
[11] | 张美琦,李妍,李树静,高艳霞,李建国,曹玉凤,李秋凤. 饲粮能量水平对荷斯坦阉牛生产性能、血液指标、屠宰性能及肉品质的影响[J]. 中国农业科学, 2021, 54(1): 203-212. |
[12] | 李雪茹,师希雄,王建忠,张攀高,田铸,韩玲. 一氧化氮合成酶抑制剂对宰后成熟过程中牦牛肉品质的影响[J]. 中国农业科学, 2020, 53(8): 1617-1626. |
[13] | 陈俐静,陈卓,李娜,孙亚伟,李红波,宋雯雯,张杨,姚刚. 新疆褐牛与安格斯牛胴体及肉质性状及脂代谢相关基因表达差异比较[J]. 中国农业科学, 2020, 53(22): 4700-4709. |
[14] | 孔凡林,李媛,唐梦琪,马满鹏,付彤,刁其玉,成思源,屠焰. 氨基酸缺乏对母犊牛生长和日粮养分消化代谢的影响[J]. 中国农业科学, 2020, 53(2): 418-430. |
[15] | 赵洋洋,李妍,韩永胜,王晓玲,李建国,高艳霞,曹玉凤,李秋凤. 谷饲饲粮粗蛋白质水平对荷斯坦公牛屠宰性能和肉品质的影响[J]. 中国农业科学, 2020, 53(2): 431-439. |
|