中国农业科学 ›› 2020, Vol. 53 ›› Issue (2): 418-430.doi: 10.3864/j.issn.0578-1752.2020.02.016
孔凡林1,李媛1,唐梦琪2,马满鹏1,付彤2,刁其玉1,成思源1,屠焰1()
收稿日期:
2019-06-24
接受日期:
2019-09-04
出版日期:
2020-01-16
发布日期:
2020-02-17
通讯作者:
屠焰
作者简介:
孔凡林,Tel:13240129429;E-mail:a895833622@163.com。
基金资助:
KONG FanLin1,LI Yuan1,TANG MengQi2,MA ManPeng1,FU Tong2,DIAO QiYu1,CHENG SiYuan1,TU Yan1()
Received:
2019-06-24
Accepted:
2019-09-04
Online:
2020-01-16
Published:
2020-02-17
Contact:
Yan TU
摘要:
研究赖氨酸(Lys)、蛋氨酸(Met)和苏氨酸(Thr)缺乏对3-6月龄中国荷斯坦母犊牛生长和日粮养分消化代谢的影响,为生产中判断母犊牛氨基酸缺乏症提供依据,并对后续母犊牛氨基酸需要量的确定提供理论依据。【方法】 72头84日龄中国荷斯坦母犊牛,按体重和出生时间相近原则随机分为4个处理组,限量饲喂4种不同氨基酸模式的饲粮,分别为氨基酸平衡组(PC组)、赖氨酸扣除组(PC-Lys)、蛋氨酸扣除组(PC-Met)和苏氨酸扣除组(PC-Thr),氨基酸扣除量均为PC组的30%。试验期97d,其中预饲期7d,正试期90d。于正试期第1、30、60、90天测定犊牛体重、体尺和乳头长度;在132—138和173—179日龄每组分别选取6头健康犊牛进行2期消化代谢试验,收集粪、尿和饲料样品,测定营养物质表观消化率及氮代谢;正试期每天记录采食量。【结果】与饲喂氨基酸平衡饲粮的犊牛相比:(1)扣除Lys显著降低90—180日龄犊牛饲料转化效率(P<0.05),日增重(ADG)为各组最低(P>0.05);扣除Met和Thr对90—180日龄犊牛ADG和饲料转化效率没有显著影响(P>0.05);(2)扣除Lys或Thr显著降低犊牛粪便评分(P<0.05),但对腹泻率没有影响(P>0.05),以PC-Lys组腹泻率最高;3)扣除Lys、Met或Thr均不影响犊牛体尺(P>0.05),但扣除Lys后犊牛乳头长度增长率均低于PC组(P>0.05);4)扣除Lys、Met或Thr不影响日粮养分表观消化率(P>0.05),但扣除Lys显著降低173—179日龄犊牛氮利用率和氮生物学价值(P<0.05)。【结论】在本试验设定的氨基酸平衡饲粮基础上,扣除Lys对犊牛生长发育和氮代谢有不利影响,扣除Thr影响犊牛腹泻,扣除Met对犊牛无明显影响。
孔凡林,李媛,唐梦琪,马满鹏,付彤,刁其玉,成思源,屠焰. 氨基酸缺乏对母犊牛生长和日粮养分消化代谢的影响[J]. 中国农业科学, 2020, 53(2): 418-430.
KONG FanLin,LI Yuan,TANG MengQi,MA ManPeng,FU Tong,DIAO QiYu,CHENG SiYuan,TU Yan. Effects of Amino Acid Deficiency on Growth Development, Dietary Nutrients Digestion and Metabolism in Heifers[J]. Scientia Agricultura Sinica, 2020, 53(2): 418-430.
表1
基础饲粮组成及营养水平(干物质基础,%)"
日粮组成 Ingredient | 含量Content (%) | 营养成分Nutrient 2) | 营养水平Nutrient level | |
---|---|---|---|---|
玉米 Corn | 45.67 | 干物质 DM(风干物质基础 Air-dry basis) | 90.53 | |
苜蓿 Alfalfa | 25 | |||
小麦麸 Wheat bran | 15 | 总能 GE(Mcal/kg) | 16.76 | |
大豆粕 Soybean meal | 11.97 | 代谢能 ME(Mcal/kg) | 12.71 | |
细石粉 CaCO3 | 1.06 | 有机物 OM | 93.32 | |
预混料1% Premix1) | 1 | 粗蛋白质 CP | 19.22 | |
食盐 NaCl | 0.3 | 粗脂肪 EE | 4.56 | |
合计 Total | 100 | 中性洗涤纤维 NDF | 20.08 | |
酸性洗涤纤维 ADF | 11.43 | |||
钙 Ca | 1.07 | |||
磷 P | 0.49 | |||
赖氨酸 Lys | 0.73 | |||
蛋氨酸 Met | 0.11 | |||
苏氨酸 Thr | 0.41 |
表3
赖氨酸、蛋氨酸和苏氨酸缺乏对犊牛生长性能的影响"
项目 Item | 组别 Group | SEM | 固定效应P值 P-value of fixed effect | |||||
---|---|---|---|---|---|---|---|---|
PC | PC-Lys | PC-Met | PC-Thr | 处理 Treatment | 日龄 Day | 处理×日龄 Treatment×day | ||
平均日增重ADG (g·d-1) | ||||||||
90-180日龄 90-180 d | 824.93ab | 786.19b | 864.71a | 821.36ab | 20.099 | <0.01 | <0.01 | 0.09 |
90-120日龄 90-120 d | 700.64ab | 638.2b | 747.69a | 721.47a | 25.414 | <0.01 | ||
120-150日龄 120-150 d | 859.78 | 952.54 | 947.02 | 874.36 | 33.509 | 0.06 | ||
150-180日龄 150-180 d | 914.36 | 767.85 | 899.42 | 868.26 | 56.175 | 0.06 | ||
干物质采食量 DMI (kg·d-1) | ||||||||
90-180日龄 90-180 d | 3.20 | 3.26 | 3.25 | 3.28 | 0.032 | 0.09 | <0.01 | 0.68 |
90-120日龄 90-120 d | 2.52 | 2.60 | 2.57 | 2.63 | 0.040 | 0.07 | ||
120-150日龄 120-150 d | 3.18b | 3.27a | 3.27a | 3.27a | 0.028 | 0.03 | ||
150-180日龄 150-180 d | 3.90 | 3.91 | 3.91 | 3.94 | 0.054 | 0.57 | ||
饲料转化效率 G/F | ||||||||
90-180日龄 90-180 d | 0.26ab | 0.24c | 0.27a | 0.25bc | 0.005 | <0.01 | <0.01 | 0.03 |
90-120日龄 90-120 d | 0.28ab | 0.24c | 0.31a | 0.27b | 0.010 | <0.01 | ||
120-150日龄 120-150 d | 0.27 | 0.29 | 0.29 | 0.27 | 0.010 | 0.12 | ||
150-180日龄 150-180 d | 0.24a | 0.19b | 0.23ab | 0.22ab | 0.014 | 0.02 |
表4
赖氨酸、蛋氨酸、苏氨酸缺乏对犊牛体尺的影响"
项目 Item | 组别 Group | SEM | P值 P-value | ||||
---|---|---|---|---|---|---|---|
PC | PC-Lys | PC-Met | PC-Thr | ||||
体高 Withers height (cm) | 90日龄 90 d | 95.4 | 93.3 | 95.4 | 94.8 | 0.45 | 0.30 |
180日龄 180 d | 111.9 | 111.6 | 111.8 | 112.2 | 0.41 | 0.96 | |
增长率Growth rate | 17.34 | 19.62 | 17.14 | 18.37 | 0.381 | 0.08 | |
体斜长 Body length (cm) | 90日龄 90 d | 102.9 | 103.5 | 102.71 | 101.83 | 0.58 | 0.82 |
180日龄 180 d | 119.3 | 120.9 | 120.3 | 121.2 | 0.48 | 0.54 | |
增长率Growth rate | 16.01 | 18.45 | 17.98 | 19.73 | 0.738 | 0.33 | |
十字部高 Hip height (cm) | 90日龄 90 d | 99.1 | 97.4 | 99.3 | 98.9 | 0.49 | 0.53 |
180日龄 180 d | 117.0 | 116.6 | 116.9 | 117.2 | 0.39 | 0.96 | |
增长率Growth rate | 18.16 | 19.67 | 17.68 | 18.57 | 0.361 | 0.25 | |
胸围 Heart girth (cm) | 90日龄 90 d | 110.3 | 110.1 | 112.1 | 110.7 | 0.53 | 0.57 |
180日龄 180 d | 135.9 | 133.4 | 136.6 | 135.8 | 0.60 | 0.25 | |
增长率Growth rate | 23.29 | 21.24 | 21.88 | 22.72 | 0.448 | 0.39 | |
腹围 Abdominal girth (cm) | 90日龄 90 d | 122.3 | 123.3 | 123.0 | 122.8 | 0.73 | 0.97 |
180日龄 180 d | 157.6 | 157.3 | 158.9 | 161.4 | 0.99 | 0.46 | |
增长率Growth rate | 29.09 | 27.66 | 29.34 | 31.73 | 0.861 | 0.41 | |
腰角宽 Hip width (cm) | 90日龄 90 d | 21.9 | 22.6 | 22.3 | 22.0 | 0.17 | 0.53 |
180日龄 180 d | 34.4 | 35.3 | 34.8 | 35.0 | 0.19 | 0.42 | |
增长率Growth rate | 56.60 | 57.17 | 55.97 | 59.76 | 1.189 | 0.67 |
表5
赖氨酸、蛋氨酸和苏氨酸缺乏对犊牛乳头发育的影响"
项目 Item | 日龄 Days of age | 组别 Group | SEM | P值 P-value | |||
---|---|---|---|---|---|---|---|
PC | PC-Lys | PC-Met | PC-Thr | ||||
左后 Left rear (mm) | 90日龄 90 d | 14.9b | 17.6a | 13.9b | 16.2ab | 0.45 | 0.01 |
180日龄 180 d | 23.5 | 25.1 | 23.4 | 26.4 | 0.53 | 0.17 | |
增长率Growth rate | 61.8ab | 47.2b | 74.1a | 63.7ab | 3.29 | 0.03 | |
左前 Left front (mm) | 90日龄 90 d | 14.9 | 17.3 | 14.8 | 15.9 | 0.41 | 0.10 |
180日龄 180 d | 27.4 | 28.8 | 26.2 | 26.9 | 0.56 | 0.40 | |
增长率Growth rate | 81.9 | 70.3 | 82.5 | 69.3 | 4.19 | 0.55 | |
右后 Right rear (mm) | 90日龄 90 d | 14.0b | 16.4a | 13.8b | 15.7ab | 0.39 | 0.03 |
180日龄 180 d | 20.9 | 23.3 | 22.8 | 24.1 | 0.53 | 0.19 | |
增长率Growth rate | 61.3 | 57.9 | 71.4 | 73.0 | 3.78 | 0.41 | |
右前 Right front (mm) | 90日龄 90 d | 15.9b | 18.1a | 14.7b | 15.8b | 0.42 | 0.02 |
180日龄 180 d | 25.5 | 28.3 | 26.2 | 27.9 | 0.50 | 0.14 | |
增长率Growth rate | 53.4ab | 45.8b | 69.5a | 53.6ab | 3.05 | 0.03 |
表7
赖氨酸、蛋氨酸、苏氨酸缺乏对犊牛营养物质表观消化率的影响"
项目 Item | 组别 Group | SEM | P值 P value | ||||
---|---|---|---|---|---|---|---|
PC | PC-Lys | PC-Met | PC-Thr | ||||
干物质表观消化率 DM apparent digestibility (%) | |||||||
135-138 d | 66.30 | 67.81 | 69.33 | 66.24 | 0.51 | 0.10 | |
176-179 d | 69.65 | 70.69 | 69.97 | 68.04 | 0.51 | 0.32 | |
有机物表观消化率 OM apparent digestibility (%) | |||||||
135-138 d | 71.26 | 71.60 | 73.67 | 71.10 | 0.47 | 0.18 | |
176-179 d | 73.91 | 75.28 | 73.92 | 72.33 | 0.49 | 0.22 | |
总能表观消化率 GE apparent digestibility (%) | |||||||
135-138 d | 65.95 | 67.77 | 68.43 | 66.31 | 0.48 | 0.21 | |
176-179 d | 70.67 | 72.23 | 70.74 | 69.37 | 0.47 | 0.20 |
表8
赖氨酸、蛋氨酸、苏氨酸缺乏对犊牛的氮代谢的影响"
项目 Item | 组别 Group | SEM | P 值 P value | |||
---|---|---|---|---|---|---|
PC | PC-Lys | PC-Met | PC-Thr | |||
摄入氮 N intake (g·d-1) | ||||||
135-138 d | 97.57 | 97.54 | 96.87 | 99.66 | 0.93 | 0.76 |
176-179 d | 104.07 | 105.20 | 105.29 | 118.60 | 2.73 | 0.23 |
粪氮 Fecal N (g·d-1) | ||||||
135-138 d | 30.77 | 30.63 | 28.78 | 34.87 | 0.86 | 0.07 |
176-179 d | 26.10 | 26.37 | 25.85 | 33.88 | 1.27 | 0.07 |
尿氮 Urine N (g·d-1) | ||||||
135-138 d | 31.14 | 29.66 | 32.08 | 26.73 | 1.01 | 0.27 |
176-179 d | 32.93b | 48.66a | 40.88ab | 40.86ab | 1.76 | 0.01 |
吸收氮 Absorded N (g·d-1) | ||||||
135-138 d | 66.79 | 66.91 | 68.10 | 64.78 | 1.12 | 0.79 |
176-179 d | 77.97 | 76.33 | 79.44 | 84.72 | 2.09 | 0.61 |
沉积氮 Retained N (g·d-1) | ||||||
135-138 d | 35.66 | 37.25 | 36.02 | 38.05 | 1.48 | 0.94 |
176-179 d | 45.04 | 30.18 | 38.56 | 43.86 | 2.14 | 0.06 |
总排出氮 Total N excretion (g·d-1) | ||||||
135-138 d | 61.91 | 60.29 | 60.86 | 61.61 | 1.28 | 0.97 |
176-179 d | 59.03 | 75.02 | 66.73 | 74.74 | 2.35 | 0.05 |
N消化率 Absorbed N of intake N (%) | ||||||
135-138 d | 68.33 | 68.51 | 70.39 | 64.97 | 0.88 | 0.18 |
176-179 d | 74.80 | 72.58 | 75.41 | 71.44 | 0.69 | 0.12 |
N利用率 Retained N of intake N (%) | ||||||
135-138 d | 36.36 | 37.99 | 37.22 | 38.15 | 1.38 | 0.97 |
176-179 d | 43.24a | 28.81b | 36.42ab | 36.96a | 1.62 | 0.01 |
N的生物学价值 Biological value of N (%) | ||||||
135-138 d | 53.04 | 55.05 | 52.69 | 58.56 | 1.73 | 0.64 |
176-179 d | 57.64a | 39.78b | 48.33ab | 51.73a | 2.04 | 0.01 |
[1] | SOBERON F, RAFFRENATO E, EVERETT R W, VAN A M E . Preweaning milk replacer intake and effects on long-term productivity of dairy calves. Journal of Dairy Science, 2012,95(2):783-793. |
[2] | QIN T, WANG H, BU D, HAO H, WANG D, ZHU H . Effects of two different forage sources on mammary gland growth, mammary cell turnover and activity in early lactation dairy cows. Animal Production Science, 2015,55(5):630-633. |
[3] | 么学博, 杨红建, 谢春元, 岳群, 王加启 . 反刍家畜常用饲料蛋白质和氨基酸瘤胃降解特性和小肠消化率评定研究. 动物营养学报, 2007,19(3):225-231. |
ME X B, YANG H J, XIE C Y, YUE Q, WANG J Q . In situ degradability characteristics of crude protein and amino acids in the rumen and small intestinal digestibility using the mobile nylon bag with ruminant feedstuffs. Chinese Journal of Animal Nutrition, 2007,19(3):225-231. (in Chinese) | |
[4] | NATION RESEARCH COUNCIL . Nutrient Requirements of Dairy Cattle. 7th revised. Washington, D. C: National Academies Press, 2001. |
[5] | NATION RESEARCH COUNCIL. Nutrient Requirements of Beef Cattle. 8th revised. Washington, D. C: National Academies Press, 2016. |
[6] | WANG T C, FULLER M F . The optimum dietary amino acid pattern for growing pigs. British Journal of Nutrition, 1989,62(1):77-89. |
[7] | 王建红 . 0~2月龄犊牛代乳品中赖氨酸、蛋氨酸和苏氨酸适宜模式的研究[D]. 北京: 中国农业科学院, 2010. |
WANG J H . Study on the optimum amino acid pattern in milk replacers for calves aged 0 to 2 months[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese) | |
[8] | ZINN R A, SHEN Y . An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. Journal of Animal Science, 1998,76(5):1280-1289. |
[9] | CHUNG T K, BAKER D H . Ideal amino acid pattern for 10-kilogram pigs. Journal of Animal Science, 1992,70(10):3102-3111. |
[10] | EGGLESTON S, BUENDIA L, MIWA K, NGARA T, TANABE K . 2006 IPCC Guidelines for national greenhouse gas inventories, intergovernmental panel on climate change(IPCC), 2006. |
[11] | AOAC. Official methods of analysis of the association of official analytical chemists[S].17th ed. Arlington: AOAC, 2000. |
[12] | 计成 . 动物营养学. 北京:高等教育出版社, 2008. |
JI C. Animal Nutrition. Beijing: Higher Education Press, 2008. (in Chinese) | |
[13] | 李雪玲, 柴建民, 张乃锋, 张蓉, 王杰, 王世琴, 陶大勇, 刁其玉 . 断奶羔羊4种必需氨基酸限制性顺序和需要量模型探索. 动物营养学报, 2017,29(1):106-117. |
LI X L, CAI J M, ZHANG N F, ZHANG R, WANG J, WANG S Q, TAO D Y, DIAO Q Y . Exploration of requirement models and limiting sequence of four kinds of essential amino acids of weaned lambs. Chinese Journal of Animal Nutrition, 2017,29(1):106-117. (in Chinese) | |
[14] | 王建红, 刁其玉, 许先查, 屠焰, 张乃锋 . 不同生理阶段犊牛赖、蛋、苏氨酸平衡模式研究. 饲料工业, 2010,31(19):39-42. |
WANG J H, DIAO Q Y, XU X C, TU Y, ZHANG N F . The proper ratio of lysine, methionine and threonine for calves from 0 to 2 months of age. Feed Industry, 2010,31(19):39-42. (in Chinese) | |
[15] | 万蒙 . 食物组成及其氨基酸平衡对大熊猫血液生化指标的影响研究[D]. 硕士学位论文. 雅安: 四川农业大学, 2016. |
WAN M . Study on effects of food composition and amino acid balance on giant panda’s biochemical indicators[D]. Yaan: Sichuan Agricultural University.(in Chinese) | |
[16] | MONTAÑO M F, TEJADA W, SALINAS J, ZINN R A . Metabolizable amino acid requirements of feedlot calves. Open Journal of Animal Sciences, 2016,6(2):149-155. |
[17] | 云强, 刁其玉, 屠焰, 张乃锋, 王建红, 周盟 . 饲粮中赖氨酸和蛋氨酸比对断奶犊牛生长性能和消化代谢的影响. 中国农业科学, 2011,44(1):133-142. |
YUN Q, DIAO Q Y, TU Y, ZHANG N F, WANG J H, ZHOU M . Effects of dietary lysine to methionine ratio on growth performance, nutrient digestibility, and metabolism in weaned calves. Scientia Agricultura Sinica, 2011,44(1):133-142. (in Chinese) | |
[18] | LIU X, DAN N, DAN W . Insight into the collagen assembly in the presence of lysine and glutamic acid: an in vitro study. Materials Science & Engineering C, 2017,70:689-700. |
[19] | SERVILLO L, GIOVANE A, CAUTELA D, CASTALDO D, BALESTRIERI M L . Where does N(ε)-trimethyllysine for the carnitine biosynthesis in mammals come from?. PLoS ONE, 2014,9(1):1-7. |
[20] | TORRENTERA N, CARRASCO R, SALINAS-CHAVIRA J, PLASCENCIS A, ZINN R A . Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves. Asian-Australasian Journal of Animal Sciences, 2017,30(1):42-50. |
[21] | HERSOM M J , M VÁZQUEZ-AÑÓN, LADYMAN K P, KERLEY M S, ARTHINGTON J D. Effect of methionine source and level on performance of growing beef calves consuming forage-based diets. The Professional Animal Scientist, 2009,25(4):465-474. |
[22] | CHAGAS J C C, FERREIRA M A, FACIOLA A P, MACHADO F S, CAMPOS M M, ENTJES M R, DONZELE J L, MARCONDES M I . Effects of methionine plus cysteine inclusion on performance and body composition of liquid-fed crossbred calves fed a commercial milk replacer and no starter feed. Journal of Dairy Science, 2018,101:6055-6065. |
[23] | 张乃锋 . 蛋白质与氨基酸营养对早期断奶犊牛免疫相关指标的影响[D]. 北京: 中国农业科学院, 2008. |
ZHANG N F . Effects of protein and amino acid nutrition on indexes relaxed to immune response of early weaned dairy calve[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese) | |
[24] | 马晨, 陈玉 . 过瘤胃蛋氨酸、甜菜碱和胆碱在奶牛生产中的应用. 新饲料, 2016(6):37-39. |
MA C, CHEN Y . Application of rumen - passing methionine, betaine and choline in dairy cattle production. New Feed, 2016(6):37-39.(in Chinese) | |
[25] | HILL T M , II H G B, ALDRICH J M, SCHLOTTERBECK R L, TANAN K G. Optimal concentrations of lysine, methionine and threonine in milk replacers for calves less than five weeks of age. Journal of Dairy Science, 2008,91(6):2433-2442. |
[26] | WU G . Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009,37(1):1-17. |
[27] | 刁其玉, 屠焰, 周怿 . 后备牛营养需要与培育的研究进展. 当代畜禽养殖业, 2011(11):22-26. |
DIAO Q Y, TU Y, ZHOU Y . Advances in research on the nutritional needs and cultivation of reserve cattle. Modern Animal Husbandry, 2011(11):22-26. (in Chinese) | |
[28] | 黄文明 . 荷斯坦后备奶牛体尺和血液生化指标的测定与分析[D]. 杭州: 浙江大学, 2016. |
HUANG W M . The detection and analysis of body size parameters and blood biochemical indexes for holstein heifers[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) | |
[29] | GAJERA A P, DUTTA K S, PARSANA D K, SAVSANI H H, ODEDRA M D, GAJBHIYE P U, MURTHY K S, CHAVDA J A . Effect of bypass lysine, methionine and fat on growth and nutritional efficiency in growing Jaffrabadi heifers. Veterinary World, 2013,6(10):766-769. |
[30] | REZAEI R, WU Z, HOU Y, BAZER F W, WU G . Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. Journal of Animal Science & Biotechnology, 2016,7(4):437-458. |
[31] | PLATHGABLER A, GABLER C, SINOWATZ F, BERISHA B, SCHAMS D . The expression of the IGF family and GH receptor in the bovine mammary gland. Journal of Endocrinology, 2001,168(1):39-48. |
[32] | 唐波 . 蛋氨酸羟基类似物异丙酯(HMBi)对肉牛育肥性能和血液指标以及H-FABP基因mRNA表达水平的影响[D]. 南京: 南京农业大学, 2014. |
TANG B . Effects of supplementing 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester on finishing performance, blood index levels and the H-FABP gene mRNA expression finishing cattle[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) | |
[33] | 郭朝龙 . 泌乳奶山羊对赖氨酸梯度缺失的代谢及代谢调节反应研究[D]. 泰安: 山东农业大学, 2014. |
GUO C L . Study on metabolism and metabolism regulation of lactating goats with lysine gradient deficiency[D]. Taian: Shandong Agricultural, 2014. (in Chinese) | |
[34] | 高景, 齐智利 . 瘤胃上皮短链脂肪酸的吸收和代谢. 动物营养学报, 2018,30(4):1271-1278. |
GAO J, QI Z L . Absorption and metabolism of short chain fatty acids in ruminal epithelium. Chinese Journal of Animal Nutrition, 2018,30(4):1271-1278. (in Chinese) | |
[35] | 陈俊宏, 赵芳, 魏凯敏, 谭世新, 杨开伦 . 添喂色氨酸、过瘤胃色氨酸对奶牛泌乳性能、血浆指标和乳中褪黑素含量的影响. 动物营养学报, 2017,29(11):3921-3931. |
CHEN J H, ZHAO F, WEI K M, TAN S X, YANG K L . Effects of tryptophan and rumen-protected tryptophan supplementations on lactation performance, plasma indexes and milk melatonin content of dairy cows. Chinese Journal of Animal Nutrition, 2017,29(11):3921-3931. (in Chinese) | |
[36] | ARDALAN M, REZAYAZDI K, DEHGHAN-BANADAKY M . Effect of rumen-protected choline and methionine on physiological and metabolic disorders and reproductive indices of dairy cows. Journal of Animal Physiology and Animal Nutrition, 2010,94(6):259-265. |
[37] | LAVEN R A, LIVESEY C T . The effect of housing and methionine intake on hoof horn hemorrhages in primiparous lactating holstein cows. Journal of Dairy Science, 2004,87(4):1015-1023. |
[38] | 高岩, 吴健豪, 曲永利, 潘琪琪, 张士博, 韩天龙, 王志博, 殷溪瀚 . 饲粮中添加过瘤胃蛋氨酸、过瘤胃赖氨酸对荷斯坦奶公牛肉用生产性能和肉品质的影响. 动物营养学报, 2016,28(9):2936-2942. |
GAO Y, WU J H, QU Y L, PAN Q Q, ZHANG S B, HAN T L, WANG Z B, YIN X H . Effects of rumen-protected methionine and rumen-protected lysine supplementations in diets on meat production performance and meat quality of holstein bulls. Chinese Journal of Animal Nutrition, 2016,28(9):2936-2942. (in Chinese) | |
[39] | HUSSEIN A H, BATISTA E D, MIESNER M D, TITGEMEYER E C . Effect of ruminal ammonia supply on lysine utilization by growing steers. Journal of Animal Science, 2016,94(2):656-664. |
[40] | HILL T M, QUIGLEY J D, BATEMAN H G, ALDRICH J M, SCHLOTTERBECK R L . Source of carbohydrate and metabolizable lysine and methionine in the diet of recently weaned dairy calves on digestion and growth. Journal of Dairy Science, 2016,99(4):2788-2796. |
[41] | SAI S . Effect of supplementation of rumen protected methionine plus lysine on growth performance, nutrient utilization and some blood metabolites in calves//Meeting of the Northwest Section of the Aps. American Physical Society, 2013. |
[42] | 苏鹏程, 卢德勋, 孙海洲, 卢媛, 牛文艺, 赵秀英, 珊丹, 李京淑 . 在氨基酸平衡饲粮内不同代谢葡萄糖水平对绒山羊小肠氨基酸表观消化率的影响. 动物营养学报, 2005,17(3):36-40. |
SU P C, LU D X, SUN H Z, LU Y, NIU W Y, ZHAO X Y, SHAN D, LI J S . Effect of different dietary metabolizable glucose levels in an amino acids balanced diet on apparent digestibility of amino acids in small intestine of cashmere goats. Chinese Journal of Animal Nutrition, 2005,17(3):36-40. (in Chinese) | |
[43] | 腾旭, 徐国恒 . 葡萄糖与氨基酸的跨膜转运机制. 生物学通报, 2007,42(9):23-24. |
TENG X, XU G H . Mechanism of glucose and amino acids transport through cellular membrane. Bulletin of Biology, 2007,42(9):23-24. (in Chinese) | |
[44] | DAI Z L, LI X L, XI P B, ZHANG J, WU G Y, ZHU W Y . Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids, 2012,42(5):1597-1608. |
[45] | COLUMBUS D A, CANT J P , DE LANGE C F M. Estimating fermentative amino acid catabolism in the small intestine of growing pigs. Animal, 2015,9(11):1769-1777. |
[46] | KIM H, MENDEZ R, CHEN X, FANG D Y, ZHANG K Z . Lysine acetylation of CREBH regulates fasting-induced hepatic lipid metabolism. Molecular and Cellular Biology, 2015,35(24):4121-4134. |
[47] | 沈佳佳, 闻浩 . 蛋白质赖氨酸琥珀酰化修饰研究进展. 医学研究生学报, 2016,29(3):332-336. |
SHEN J J, WEN H . The research progress of protein lysine succinylation. Journal of Medical Postgraduates, 2016,29(3):332-336. (in Chinese) | |
[48] | 李俊明, 贺强, 袁超, 邹晓庭 . 苏氨酸的营养生理功能及其在畜禽日粮中的应用. 中国饲料, 2014(11):35-38. |
LI J M, HE Q, YUAN C, ZOU X T . Nutrition and physiological function of threonine and its application in livestock and poultry diet. China Feed, 2014(11):35-38. (in Chinese) | |
[49] | 栾玉静, 杨在宾, 姜淑贞, 张崇玉, 于玲玲, 张桂国 . 不同水平赖氨酸对肉牛瘤胃营养物质代谢规律的影响. 中国草食动物科学, 2004,24(4):3-5. |
LUAN Y J, YANG Z B, JIANG S Z, ZHANG C Y, YU L L, ZHANG G G . Effects of different lysine levels on nutrient metabolism of rumen in beef cattle. China Herbivore Science, 2004,24(4):3-5. (in Chinese) | |
[50] | ALFERINK S J J, VAN DEN BORNE J J G C, HABET A, JACOBS A A A, GERRITS W J J . Intravenous administration of lysine and threonine to a deficient diet results in low nitrogen utilization in preruminant calves. Journal of Orthoptera Research, 2007,10:25-37. |
[51] | PAREKH P . Cloning of wheat germ eukaryotic initiation factor eIF2[D]. Austin: University of Texas at Austin, 2009. |
[52] | SHIN B S, KIM J R, WALKER S E, DONG J, LORSCH J R, DEVER T E . Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNA Met ternary complex binding to the 40S ribosome . Nature Structural and Molecular Biology, 2011,18(11):1227-1234. |
[53] | BJORDAL M, ARQUIER N, KNIAZEFF J, PIN J P, LEOPOLD P . Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell, 2014,156(3):510-521. |
[1] | 余琦隆,韩莹琰,郝敬虹,秦晓晓,刘超杰,范双喜. 外源亚精胺对高温胁迫下生菜氮代谢的影响[J]. 中国农业科学, 2022, 55(7): 1399-1410. |
[2] | 孔凡林,李媛,付彤,刁其玉,屠焰. 蛋氨酸羟基异丙酯对母犊牛瘤胃发酵和微生物区系的影响[J]. 中国农业科学, 2022, 55(4): 796-806. |
[3] | 车大璐,赵俐辰,程素彩,刘爱瑜,李晓宇,赵寿培,王健诚,王媛,高玉红,孙新胜. 垫料床对育肥羔羊生长性能和臭气排放的影响[J]. 中国农业科学, 2022, 55(24): 4943-4956. |
[4] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
[5] | 陈志敏,常文环,郑爱娟,蔡辉益,刘国华. 饲粮中添加膨化羽毛粉对肉鸡生长性能、屠宰性能和血清生化指标的影响[J]. 中国农业科学, 2022, 55(13): 2643-2653. |
[6] | 韩展誉,吴春艳,许艳秋,黄福灯,熊义勤,管弦悦,周庐建,潘刚,程方民. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响[J]. 中国农业科学, 2021, 54(7): 1439-1454. |
[7] | 王金飞,杨国义,樊子菡,刘旗,张鹏程,任有蛇,杨春合,张春香. 饲粮中全株玉米青贮比例对杜湖杂交母羔生长性能、瘤胃发酵、养分消化率及血清学指标的影响[J]. 中国农业科学, 2021, 54(4): 831-844. |
[8] | 张兰,王良治,黄艳玲,廖秀冬,张丽阳,吕林,罗绪刚. 饲粮微量元素添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响[J]. 中国农业科学, 2021, 54(22): 4906-4916. |
[9] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
[10] | 王金凤,王壮壮,谷丰序,牟海萌,王宇,段剑钊,冯伟,王永华,郭天财. 氮密调控对两个冬小麦品种碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(19): 4070-4083. |
[11] | 李明,李迎春,牛晓光,马芬,魏娜,郝兴宇,董李冰,郭李萍. 大气CO2浓度升高与氮肥互作对玉米花后碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(17): 3647-3665. |
[12] | 王晨,张宏伟,王虎成,孙晓萍,李发弟,杨博辉. 高山美利奴育成羊的能量与蛋白质需要量[J]. 中国农业科学, 2021, 54(16): 3537-3548. |
[13] | 黄文琴,吕小康,庄一民,崔凯,王世琴,刁其玉,张乃锋. 早期断奶和育肥期饲粮NDF水平对湖羊生长性能和消化代谢的影响[J]. 中国农业科学, 2021, 54(10): 2217-2228. |
[14] | 杨云燕,王其炎,彭地纬,潘一帆,高晓梅,宣泽义,陈少梅,邹彩霞,曹艳红,林波. 日粮添加肉桂醛对奶牛公犊生长、健康及瘤胃发酵性能的影响[J]. 中国农业科学, 2021, 54(10): 2229-2238. |
[15] | 任春燕,毕研亮,郭艳丽,杜汉昌,于博,屠焰,刁其玉. 开食料中性洗涤纤维水平对犊牛生长性能、血清生化指标和抗氧化功能的影响[J]. 中国农业科学, 2020, 53(2): 440-450. |
|