[1] |
颜泉梅, 赖良学. 基因修饰猪模型应用于人类健康的相关研究进展. 中国基础科学, 2015, 17(5):20-27. doi: 10.3969/j.issn.1009-2412.2015.05.004.
doi: 10.3969/j.issn.1009-2412.2015.05.004
|
|
YAN Q M, LAI L X. Progress of genetically-modified pigs in the human health related research. China Basic Science, 2015, 17(5):20-27. doi: 10.3969/j.issn.1009-2412.2015.05.004. (in Chinese)
doi: 10.3969/j.issn.1009-2412.2015.05.004
|
[2] |
李文玲, 鲍磊, 肖磊. 基因修饰猪作为异种器官移植供体的研究进展. 中国细胞生物学学报, 2014, 36(9):1300-1305.
|
|
LI W L, BAO L, XIAO L. The progress of genetic-modified pigs as donors in xenotransplantation. Chinese Journal of Cell Biology, 2014, 36(9):1300-1305. (in Chinese)
|
[3] |
黄耀强, 李国玲, 杨化强, 吴珍芳. 基因编辑猪在生物医学研究中的应用. 遗传, 2018, 40(8):632-646. doi: 10.16288/j.yczz.18-026.
doi: 10.16288/j.yczz.18-026
|
|
HUANG Y Q, LI G L, YANG H Q, WU Z F. Progress and application of genome-edited pigs in biomedical research. Hereditas, 2018, 40(8):632-646. doi: 10.16288/j.yczz.18-026. (in Chinese)
doi: 10.16288/j.yczz.18-026
|
[4] |
CHEN B Z, GU P, JIA J S, LIU W, LIU Y M, XU T, LIN X L, LIN T Y, LIU Y, CHEN H W, XU M C, YUAN J, ZHANG J N, ZHANG Y H, XIAO D, GU W W. Optimization strategy for generating gene-edited tibet minipigs by synchronized oestrus and cytoplasmic microinjection. International Journal of Biological Sciences, 2019, 15(12):2719-2732.
doi: 10.7150/ijbs.35930
|
[5] |
JUN S M, PARK M, LEE J Y, JUNG S, LEE J E, SHIM S H, SONG H, LEE D R. Single cell-derived clonally expanded mesenchymal progenitor cells from somatic cell nuclear transfer-derived pluripotent stem cells ameliorate the endometrial function in the uterus of a murine model with Asherman's syndrome. Cell Proliferation, 2019, 52(3):e12597. doi: 10.1111/cpr.12597.
doi: 10.1111/cpr.12597
|
[6] |
GRUPEN C G. The evolution of porcine embryo in vitro production. Theriogenology, 2014, 81(1):24-37. doi: 10.1016/j.theriogenology. 2013.09.022.
doi: 10.1016/j.theriogenology. 2013.09.022
|
[7] |
PFEFFER P L. Building principles for constructing a mammalian blastocyst embryo. Biology (Basel), 2018, 23; 7(3):41.
|
[8] |
OESTRUP O, HALL V, PETKOV S G, WOLF X A. HYLDIG S, HYTTEL P. From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reproduction in Domestic Animals, 2009, 44(Suppl 3):39-49.
doi: 10.1111/rda.2009.44.issue-s3
|
[9] |
SAIZ N, PLUSA B. Early cell fate decisions in the mouse embryo. Development (Cambridge, England), 2013, 145(3):R65-R80. doi: 10.1530/rep-12-0381.
doi: 10.1530/rep-12-0381
|
[10] |
YAMANAKA Y, RALSTON A, STEPHENSON R O, ROSSANT J. Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics, 2006, 235(9):2301-2314. doi: 10.1002/dvdy.20844.
doi: 10.1002/dvdy.20844
|
[11] |
CHEN L, YABUUCHI A, EMINLI S, TAKEUCHI A, LU C W, HOCHEDLINGER K, DALEY G Q. Cross-regulation of the Nanog and Cdx2 promoters. Cell Research, 2009, 19(9):1052-1061. doi: 10.1038/cr.2009.79.
doi: 10.1038/cr.2009.79
|
[12] |
NISHIOKA N, INOUE K, ADACHI K, KIYONARI H, OTA M, RALSTON A, YABUTA N, HIRAHARA S, STEPHENSON R O, OGONUKI N, MAKITA R, KURIHARA H, MORIN-KENSICKI E M, NOJIMA H, ROSSANT J, NAKAO K, NIWA H. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell, 2009, 16(3):398-410. doi: 10.1016/j.devcel.2009.02.003.
doi: 10.1016/j.devcel.2009.02.003
|
[13] |
BOU G, LIU S, GUO J, ZHAO Y, SUN M, XUE B, WANG J, WEI Y, KONG Q, LIU Z. Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos. Developmental Biology, 2016, 410(1):36-44. doi: 10.1016/j.ydbio.2015.12.014.
doi: 10.1016/j.ydbio.2015.12.014
|
[14] |
CAO Z B, XU T T, TONG X, WANG Y Q, ZHANG D D, GAO D, ZHANG L, NING W, QI X, MA Y Y, YU T, KNOTT J G, ZHANG Y H. Maternal Yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cell, 2019, 8(12):1606.
|
[15] |
LIN K C, PARK H W, GUAN K L. Regulation of the hippo pathway transcription factor TEAD. Trends in Biochemical Sciences, 2017, 42(11):862-872. doi: 10.1016/j.tibs.2017.09.003.
doi: 10.1016/j.tibs.2017.09.003
|
[16] |
HOIDEN J K, CUNNINGHAM C N. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers(Basel), 2018, 10(3):81.
|
[17] |
ZHAO B, YE X, YU J, LI L, LI W, LI S, YU J, LIN J D, WANG C Y, CHINNAIYAN A M, LAI Z C, GUAN K L. TEAD mediates YAP- dependent gene induction and growth control. Genes & Development, 2008, 22(14):1962-1971. doi: 10.1101/gad.1664408.
doi: 10.1101/gad.1664408
|
[18] |
TSIKA R W, MA L, KEHAT I, SCHRAMM C, SIMMER G, MORGAN B, FINE D M, HANFT L M, MCDONALD K S, MOLKENTIN J D, KRENZ M, YANG S, JI J. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. The Journal of Biological Chemistry, 2010, 285(18):13721-13735. doi: 10.1074/jbc.m109.063057.
doi: 10.1074/jbc.m109.063057
|
[19] |
HAN Z, YU Y, CAI B, XU Z, BAO Z, ZHANG Y, BAMBA D, MA W, GAO X, YUAN Y, ZHANG L, YU M, LIU S, YAN G, JIN M, HUANG Q, WANG X, HUA B, YANG F, PAN Z, LIANG H, LIU Y. YAP/TEAD3 signal mediates cardiac lineage commitment of human-induced pluripotent stem cells. Journal of Cellular Physiology, 2020, 235(3):2753-2760. doi: 10.1002/jcp.29179.
doi: 10.1002/jcp.29179
|
[20] |
GIBAULT F, STURBAUT M, BAILLY F, MELNYK P, COTELLE P. Targeting transcriptional enhanced associate domains (TEADs). Journal of Medicinal Chemistry, 2018, 61(12):5057-5072. doi: 10. 1021/acs.jmedchem.7b00879.
doi: 10. 1021/acs.jmedchem.7b00879
|
[21] |
SHI Z, HE F, CHEN M, HUA L, WANG W, JIAO S, ZHOU Z. DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Oncogene, 2017, 36(30):4362-4369. doi: 10.1038/onc.2017.24.
doi: 10.1038/onc.2017.24
|
[22] |
HOME P, SAHA B, RAY S, DUTTA D, GUNEWARDENA S, YOO B, PAL A, VIVIAN J L, LARSON M, PETROFF M, GALLAGHER P G, SCHULZ V P, WHITE K L, GOLOS T G, BEHR B, PAUL S. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19):7362-7367. doi: 10.1073/pnas.1201595109.
doi: 10.1073/pnas.1201595109
|
[23] |
YAGI R, KOHN M J, KARAVANOVA I, KANEKO K J, VULLHORST D, DEPAMPHILIS M L, BUONANNO A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development (Cambridge, England), 2007, 134(21):3827-3836. doi: 10.1242/dev.010223.
doi: 10.1242/dev.010223
|
[24] |
NISHIOKA N, YAMAMOTO S, KIYONARI H, SATO H, SAWADA A, OTA M, NAKAO K, SASAKI H. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mechanisms of Development, 2008, 125(3/4):270-283. doi: 10.1016/ j.mod.2007.11.002.
doi: 10.1016/ j.mod.2007.11.002
|
[25] |
KUMAR RAM P, SOMA R, PRATIK H, BISWARUP S, BHASWATI B, WILKINS HEATHER M, HEMANTKUMAR C, AVISHEK G, JESSICA M F, ARINDAM P, PARTHA K, SWERDLOW RUSSELL H, SOUMEN P. Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development, 2018, 145(19): dev162644. doi: 10.1242/dev.162644.
doi: 10.1242/dev.162644
|
[26] |
KANEKO K J, DEPAMPHILIS M L. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development (Cambridge, England), 2013, 140(17):3680-3690. doi: 10.1242/ dev.093799.
doi: 10.1242/ dev.093799
|
[27] |
AKIZAWA H, KOBAYASHI K, BAI H, TAKAHASHI M, KAGAWA S, NAGATOMO H, KAWAHARA M. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction (Cambridge, England), 2018, 155(6):563-571. doi: 10.1530/rep-18-0043.
doi: 10.1530/rep-18-0043
|
[28] |
SAKURAI N, TAKAHASHI K, EMURA N, HASHIZUME T, SAWAI K. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. The Journal of Reproduction and Development, 2017, 63(2):135-142.
doi: 10.1262/jrd.2016-130
|
[29] |
贲文锐. Tead1-3在小鼠围着床期子宫中的表达研究[D]. 哈尔滨: 东北农业大学, 2014.
|
|
BEN W R. Expression of Tead1-3 in Mouse Uterus during peri-i mplantation period[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese)
|
[30] |
XIAO L, MA L, WANG Z, YU Y, LYE S J, SHAN Y, WEI Y. Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. Biochimica et Biophysica Acta Molecular Cell Research, 2020, 1867(9):118736. doi: 10.1016/j.bbamcr.2020.118736.
doi: 10.1016/j.bbamcr.2020.118736
|