中国农业科学 ›› 2022, Vol. 55 ›› Issue (16): 3242-3255.doi: 10.3864/j.issn.0578-1752.2022.16.014
邓富丽1(),申丹1(),钟儒清1,张顺芬1,李滔2,孙曙东2,陈亮1(),张宏福1
收稿日期:
2021-07-20
接受日期:
2021-11-29
出版日期:
2022-08-16
发布日期:
2022-08-11
通讯作者:
陈亮
作者简介:
邓富丽,E-mail: 基金资助:
DENG FuLi1(),SHEN Dan1(),ZHONG RuQing1,ZHANG ShunFen1,LI Tao2,SUN ShuDong2,CHEN Liang1(),ZHANG HongFu1
Received:
2021-07-20
Accepted:
2021-11-29
Online:
2022-08-16
Published:
2022-08-11
Contact:
Liang CHEN
摘要:
【目的】利用体外模拟法优化玉米—杂粕型饲粮的非淀粉多糖(NSP)酶谱,并分析优化的非淀粉多糖酶谱对饲粮养分消化率和育肥猪肠道微生物组成和结构的影响,为饲粮高效利用和精准饲养提供数据支撑和理论参考。【方法】试验一在育肥猪玉米—杂粕型饲粮中分别添加不同水平的木聚糖酶、β-葡聚糖酶、纤维素酶、α-半乳糖苷酶、β-甘露聚糖酶和果胶酶6种NSP酶,采用胃—小肠体外模拟法测定体外回肠干物质消化率(IVIDMD);取IVIDMD达到最大值时各NSP酶的添加水平为该NSP酶0编码水平,按照六元二次回归正交旋转组合设计,进行体外消化试验,建立IVIDMD与NSP酶添加量的六元二次回归方程,筛选出玉米—杂粕型饲粮最优NSP酶谱(OEC);利用胃—小肠—大肠体外模拟消化法分析测定添加OEC前后饲粮的体外干物质消化率(IVDMD)、体外能量消化率(IVGED)和体外消化能(IVDE),以验证OEC的效果。试验二按照单因素完全随机设计,选用16头健康、体重相近去势公猪(117.8 ± 1.66 kg),随机分为2个处理组,每个处理8头猪,对照组饲喂玉米—杂粕型基础饲粮,加酶组在基础饲粮中添加OEC;在试验开展第18天采用直肠擦拭法采集猪新鲜粪便,利用16S rRNA基因高通量测序对粪便微生物菌群的多样性及相对丰度进行分析,并进行功能预测。【结果】(1)在本试验条件下,玉米—杂粕型饲粮OEC为:纤维素酶1 003 U·kg-1、木聚糖酶18 076 U·kg-1、β-葡聚糖酶1 377 U·kg-1、β-甘露聚糖酶14 765 U·kg-1、α-半乳糖苷酶337 U·kg-1和果胶酶138 U·kg-1;(2)在玉米—杂粕型饲粮中添加OEC使IVDMD由73.44%显著提高到76.26%(P<0.01),IVGED由74.03%显著提高到76.45%(P = 0.01),IVDE由14.97 MJ·kg-1显著提高到15.58 MJ·kg-1(P<0.01);(3)在门水平上,共筛选出了12个相对丰度大于0.1%的菌门,其中Bacteroidota(拟杆菌门)、Firmicutes(厚壁菌门)和Spirochaetota(螺旋体门)为优势菌门,三者之和在组内占比达96%以上;(4)在属水平上,饲粮中添加OEC显著增加norank_f_F082,norank_f_Bacteroidales_RF16_group,Bacteroides(拟杆菌属)和Roseburia(氏菌属)的相对丰度(P<0.05),Eubacterium_ruminantium_group(P = 0.083)有增加的趋势,而Oscillibacter(颤杆菌克)的相对丰度显著降低(P<0.05),Clostridium_sensu_stricto_1和norank_f__norank_o__WCHB1-41(P = 0.083)有降低的趋势(P = 0.052)。【结论】饲粮中添加体外法优化的NSP酶谱,显著提高了育肥猪玉米—杂粕型饲粮干物质和能量的体外消化率以及体外消化能,增加了纤维分解菌和产丁酸菌等有益菌在育肥猪肠道微生物中的占比,在一定程度上减少了有害菌的数量,优化了肠道微生态。
邓富丽,申丹,钟儒清,张顺芬,李滔,孙曙东,陈亮,张宏福. 体外法优化玉米—杂粕型饲粮的非淀粉多糖酶谱及其对育肥猪肠道微生物的影响[J]. 中国农业科学, 2022, 55(16): 3242-3255.
DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs[J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
表2
试验饲粮营养成分含量分析(%,风干基础)"
项目Item | 含量Content |
---|---|
干物质 Dry matter | 88.26 |
粗蛋白 Crude protein | 16.95 |
粗脂肪 Ether extract | 3.62 |
灰分 Ash | 6.49 |
中性洗涤纤维 Neutral detergent fiber | 15.83 |
酸性洗涤纤维 Acid detergent fiber | 5.49 |
钙 Calcium | 0.75 |
总磷 Total phosphorus | 0.52 |
总能 Gross energy(MJ·kg-1) | 18.42 |
必需氨基酸 Indispensable AA | |
赖氨酸 Lys | 0.74 |
蛋氨酸 Met | 0.12 |
苏氨酸 Thr | 0.33 |
精氨酸 Arg | 0.87 |
组氨酸 His | 0.42 |
异亮氨酸 Ile | 0.5 |
亮氨酸 Leu | 1.32 |
苯丙氨酸 Phe | 0.68 |
缬氨酸 Val | 0.74 |
非必需氨基酸 Dispensable AA | |
丙氨酸 Ala | 0.80 |
天冬氨酸 Asp | 1.34 |
半胱氨酸 Cys | 0.13 |
谷氨酸 Glu | 2.84 |
甘氨酸 Gly | 0.60 |
脯氨酸 Pro | 0.73 |
丝氨酸 Ser | 0.72 |
酪氨酸 Tyr | 0.33 |
表3
六元二次回归正交旋转组合设计因素及水平"
编码 Code | <BOLD>X</BOLD>1(纤维素酶) <BOLD>X</BOLD>1 (Cellulase) | <BOLD>X</BOLD><BOLD>2</BOLD>(木聚糖酶) <BOLD>X</BOLD><BOLD>2</BOLD> (Xylanase) | <BOLD>X</BOLD>3(β-甘露聚糖酶) <BOLD>X</BOLD>3 (β-mannanase) | <BOLD>X</BOLD>4(α-半乳糖苷酶) <BOLD>X</BOLD>4 (α-galactosidase) | <BOLD>X</BOLD><BOLD>5</BOLD>(β-葡聚糖酶) <BOLD>X</BOLD><BOLD>5</BOLD> (β-glucanases) | <BOLD>X</BOLD><BOLD>6</BOLD>(果胶酶) <BOLD>X</BOLD>6 (Pectinase) |
---|---|---|---|---|---|---|
2.378 | 147.6 | 637.8 | 418.9 | 147.6 | 127.6 | 147.6 |
1 | 120.0 | 500.0 | 350.0 | 120.0 | 100.0 | 120.0 |
0 | 100.0 | 400.0 | 300.0 | 100.0 | 80.0 | 100.0 |
-1 | 80.0 | 300.0 | 250.0 | 80.0 | 60.0 | 80.0 |
-2.378 | 52.4 | 162.2 | 181.1 | 52.4 | 32.4 | 52.4 |
[1] | 张宏福, 高理想, 陈亮, 钟儒清. 饲粮非淀粉多糖特性及猪饲粮非淀粉多糖酶谱优化方法研究进展[C]// 中国畜牧兽医学会动物营养学分会第十届全国代表大会暨十二届学术研讨会. 武汉: 2016: 43-54. |
ZHANG H F, GAO L X, CHEN L, ZHONG R Q. Research progress on characteristics and optimization methods of dietary non-starch polysaccharides enzymes spectrum for pigs[C]// The 10th National Congress of Animal Nutrition Branch of Chinese Society of Animal Science and Veterinary Medicine and the 12th Academic Conference. Wuhan: 2016: 43-54. (in Chinese) | |
[2] | 向兴, 唐行模, 刘艺. 非淀粉多糖酶在猪上的应用研究进展. 今日养猪业, 2019(3): 94-97. |
XIANG X, TANG H M, LIU Y. Advances in the application of non-starch polysaccharide enzymes in pigs. Pig Today, 2019(3): 94-97. (in Chinese) | |
[3] |
ZIJLSTRA R T, OWUSU-ASIEDU A, SIMMINS P H. Future of NSP-degrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livestock Science, 2010, 134(1-3): 255-257.
doi: 10.1016/j.livsci.2010.07.017 |
[4] |
SALEH A A, EL-FAR A H, ABDEL-LATIF M A, EMAM M A, GHANEM R, ABD EL-HAMID H S. Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes. PLoS ONE, 2018, 13(5): e0198085. doi: 10.1371/journal.pone. 0198085.
doi: 10.1371/journal.pone. 0198085 |
[5] |
MENG X, SLOMINSKI B A, NYACHOTI C M, CAMPBELL L D, GUENTER W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Science, 2005, 84(1): 37-47. doi: 10.1093/ps/84.1.37.
doi: 10.1093/ps/84.1.37 |
[6] |
ZHOU Y, JIANG Z, LV D, WANG T. Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science, 2009, 88(2): 316-322.
doi: 10.3382/ps.2008-00231 |
[7] |
YIN J, LI F N, KONG X F, WEN C Y, GUO Q P, ZHANG L Y, WANG W L, DUAN Y H, LI T J, TAN Z L, YIN Y L. Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food & Function, 2019, 10(5): 2701-2709.. doi: 10.1039/c8fo02485e.
doi: 10.1039/c8fo02485e |
[8] |
高理想, 陈亮, 崔世贵, 谢月华, 张宏福. 体外模拟消化法优化生长猪饲粮非淀粉多糖酶谱. 动物营养学报, 2017, 29(4): 1205-1217. doi: 10.3969/j.issn.1006-267x.2017.04.016.
doi: 10.3969/j.issn.1006-267x.2017.04.016 |
GAO L X, CHEN L, CUI S G, XIE Y H, ZHANG H F. Optimization of non-starch polysaccharide enzymes of diets for growing pigs using in vitro method. Chinese Journal of Animal Nutrition, 2017, 29(4): 1205-1217. doi: 10.3969/j.issn.1006-267x.2017.04.016. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2017.04.016 |
|
[9] |
张立兰, 高理想, 陈亮, 钟儒清, 张宏福. 体外消化法优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮非淀粉多糖酶谱的研究. 畜牧兽医学报, 2017, 48(8): 1468-1480. doi: 10.11843/j.issn.0366- 6964.2017.08.011.
doi: 10.11843/j.issn.0366- 6964.2017.08.011 |
ZHANG L L, GAO L X, CHEN L, ZHONG R Q, ZHANG H F. Optimization of non-starch polysaccharide enzymes of corn-soybean- DDGS and wheat-soybean diets for growing pig using in vitro method. Acta Veterinaria et Zootechnica Sinica, 2017, 48(8): 1468-1480. doi: 10.11843/j.issn.0366-6964.2017.08.011. (in Chinese)
doi: 10.11843/j.issn.0366- 6964.2017.08.011 |
|
[10] |
LEE S H, HOSSEINDOUST A, LAXMAN INGALE S, RATHI P C, YOON S Y, CHOI J W, KIM J S. Thermostable xylanase derived from Trichoderma citrinoviride increases growth performance and non-starch polysaccharide degradation in broiler chickens. British Poultry Science, 2020, 61(1): 57-62. doi: 10.1080/00071668.2019. 1673316.
doi: 10.1080/00071668.2019. 1673316 |
[11] |
CHOCT M, HUGHES R J, BEDFORD M R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. British Poultry Science, 1999, 40(3): 419-422. doi: 10.1080/00071669987548.
doi: 10.1080/00071669987548 |
[12] |
LONG C, RöSCH C, DE VRIES S, SCHOLS H, VENEMA K. Cellulase and alkaline treatment improve intestinal microbial degradation of recalcitrant fibers of rapeseed meal in pigs. Journal of Agricultural and Food Chemistry, 2020, 68(39): 11011-11025.
doi: 10.1021/acs.jafc.0c03618 |
[13] |
CLUNIES M, LEESON S. In vitro estimation of dry matter and crude protein digestibility. Poultry Science, 1984, 63(1): 89-96.
doi: 10.3382/ps.0630089 |
[14] |
胡光源, 赵峰, 张宏福, 钟永兴, 刘震坤. 饲粮蛋白质来源与水平对生长猪空肠液组成的影响. 动物营养学报, 2010, 22(5): 1220-1225. doi: 10.3969/j.issn.1006-267x.2010.05.015.
doi: 10.3969/j.issn.1006-267x.2010.05.015 |
HU G Y, ZHAO F, ZHANG H F, ZHONG Y X, LIU Z K. Effects of the source and level of dietary protein on the composition of jejunal fluid in growing pigs. Acta Zoonutrimenta Sinica, 2010, 22(5): 1220-1225. doi: 10.3969/j.issn.1006-267x.2010.05.015. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2010.05.015 |
|
[15] |
ZHANG S F, ZHONG R Q, GAO L X, LIU Z Q, CHEN L, ZHANG H F. Effects of optimal carbohydrase mixtures on nutrient digestibility and digestible energy of corn- and wheat-based diets in growing pigs. Animals, 2020, 10(10): 1846.
doi: 10.3390/ani10101846 |
[16] |
CHEN L, GAO L X, HUANG Q H, LU Q P, SA R N, ZHANG H F. Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system. Journal of Animal Science, 2014, 92(9): 3887-3894. doi: 10.2527/jas.2013-7092.
doi: 10.2527/jas.2013-7092 |
[17] | 高理想. 猪饲粮非淀粉多糖酶谱仿生优化方法的研究[D]. 北京: 中国农业科学院, 2016. |
GAO L X. Study on bionic optimization method of dietary non-starch polysaccharide enzymes profile for pigs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[18] |
ZHONG R Q, GAO L X, ZHANG L L, HUANG Q H, CHEN L, ZHANG H F. Effects of optimal carbohydrases cocktails screened using an in vitro method on nutrient and energy digestibility of different fiber source diets fed to growing pigs. Animal Feed Science and Technology, 2021, 271: 114728.
doi: 10.1016/j.anifeedsci.2020.114728 |
[19] |
CHEN Y X, SHEN D, ZHANG L L, ZHONG R Q, LIU Z Q, LIU L, CHEN L, ZHANG H F. Supplementation of non-starch polysaccharide enzymes cocktail in a corn-miscellaneous meal diet improves nutrient digestibility and reduces carbon dioxide emissions in finishing pigs. Animals, 2020, 10(2): 232.
doi: 10.3390/ani10020232 |
[20] | 张丽英. 饲料分析及饲料质量检测技术. 3版. 北京: 中国农业大学出版社, 2007. |
ZHANG L Y. Feed analysis and quality test technology. (Third Edition). Beijing: China Agricultural university Press, 2007. (in Chinese) | |
[21] | 赵峰, 张宏福, 张子仪. 单胃动物仿生消化系统操作手册. (第二版). 中国农业科学院. 2011. |
ZHAO F, ZHANG H F, ZHANG Z Y. Operation manual of bionic digestive system for monogastric animals. (Second Edition). Chinese Academy of Agricultural Sciences. Chinese Academy of Agricultural Sciences:2011. (in Chinese) | |
[22] |
WANG Q, GARRITY G M, TIEDJE J M, COLE J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Mucosal Immunology, 2007, 73(16): 5261-5267. doi: 10.1128/aem.00062-07.
doi: 10.1128/aem.00062-07 |
[23] |
张发莲. 饲用酶制剂的应用研究进展. 畜禽业, 2013(7): 14-16. doi: 10.3969/j.issn.1008-0414.2013.07.008.
doi: 10.3969/j.issn.1008-0414.2013.07.008 |
ZHANG F L. Research progress on application of enzyme preparation for feeding. Livestock and Poultry Industry, 2013(7): 14-16. doi: 10. 3969/j.issn.1008-0414.2013.07.008. (in Chinese)
doi: 10.3969/j.issn.1008-0414.2013.07.008 |
|
[24] |
OLUKOSI O A, BEDFORD M R, ADEOLA O. Xylanase in diets for growing pigs and broiler chicks. Canadian Journal of Animal Science, 2007, 87(2): 227-235.
doi: 10.4141/CJAS06005 |
[25] |
DIEBOLD G, MOSENTHIN R, PIEPHO H P, SAUER W C. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. Journal of Animal Science, 2004, 82(9): 2647-2656. doi: 10.2527/2004.8292647x.
doi: 10.2527/2004.8292647x |
[26] |
REILLY P, SWEENEY T, O'SHEA C, PIERCE K M, FIGAT S, SMITH A G, GAHAN D A, O'DOHERTY J V. The effect of cereal-derived beta-glucans and exogenous enzyme supplementation on intestinal microflora, nutrient digestibility, mineral metabolism and volatile fatty acid concentrations in finisher pigs. Animal Feed Science and Technology, 2010, 158(3-4): 165-176.
doi: 10.1016/j.anifeedsci.2010.04.008 |
[27] |
WOYENGO T A, SANDS J S, GUENTER W, NYACHOTI C M. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets. Journal of Animal Science, 2008, 86(4): 848-857.
doi: 10.2527/jas.2007-0018 |
[28] |
NITRAYOVÁ S, HEGER J, PATRÁŠ P, KLUGE H, BROŽ J. Effect of xylanase on apparent ileal and total tract digestibility of nutrients and energy of rye in young pigs. Archives of Animal Nutrition, 2009, 63(4): 281-291. doi: 10.1080/17450390903020455.
doi: 10.1080/17450390903020455 |
[29] |
SALEH F, OHTSUKA A, TANAKA T, HAYASHI K. Effect of enzymes of microbial origin on in vitro digestibilities of dry matter and crude protein in soybean meal. Animal Science Journal, 2003, 74(1): 23-29.
doi: 10.1046/j.1344-3941.2003.00082.x |
[30] |
MALATHI V, DEVEGOWDA G. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poultry Science, 2001, 80(3): 302-305. doi: 10.1093/ps/80.3.302.
doi: 10.1093/ps/80.3.302 |
[31] |
TERVILAWILO A, PARKKONEN T, MORGAN A, HOPEAKOSKINURMINEN M, POUTANEN K, HEIKKINEN P, AUTIO K. In vitro digestion of wheat microstructure with xylanase and cellulase from Trichoderma reesei. Journal of Cereal Science, 1996, 24(3): 215-225.
doi: 10.1006/jcrs.1996.0054 |
[32] |
ANNISON G, CHOCT M. Anti-nutritive activities of cereal non- starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poultry Science Journal, 1991, 47(3): 232-242.
doi: 10.1079/WPS19910019 |
[33] |
MAVROMICHALIS I, HANCOCK J D, SENNE B W, GUGLE T L, KENNEDY G A, HINES R H, WYATT C L. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. Journal of Animal Science, 2000, 78(12): 3086-3095. doi: 10.2527/ 2000.78123086x.
doi: 10.2527/ 2000.78123086x |
[34] |
OLUKOSI O A, SANDS J S, ADEOLA O. Supplementation of carbohydrases or phytase individually or in combination to diets for weanling and growing-finishing pigs. Journal of Animal Science, 2007, 85(7): 1702-1711. doi: 10.2527/jas.2006-709.
doi: 10.2527/jas.2006-709 |
[35] |
O'SHEA C J, MC ALPINE P O, SOLAN P, CURRAN T, VARLEY P F, WALSH A M, DOHERTY J V O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Animal Feed Science and Technology, 2014, 189: 88-97.
doi: 10.1016/j.anifeedsci.2013.11.012 |
[36] |
FLINT H J, SCOTT K P, LOUIS P, DUNCAN S H. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10): 577-589. doi: 10.1038/nrgastro.2012.156.
doi: 10.1038/nrgastro.2012.156 |
[37] |
LIN C H, WAN J J, SU Y, ZHU W Y. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites, 2018, 8(4): 89.
doi: 10.3390/metabo8040089 |
[38] |
ZHOU Y, SHAN G, SODERGREN E, WEINSTOCK G, WALKER W A, GREGORY K E. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis: a case-control study. The Journal of Pediatrics, 2015, 10(3): e0118632. doi: 10.1371/ journal.pone.0118632.
doi: 10.1371/ journal.pone.0118632 |
[39] |
MENG Q, SUN S, LUO Z, SHI B, SHAN A, CHENG B. Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food & Function, 2019, 10(9): 5626-5643. doi: 10.1039/c9fo00637k.
doi: 10.1039/c9fo00637k |
[40] | 刘亚丹, 左周, 秦军军, 杨阳, 蔡春波, 赵燕, 郭晓红, 曹果清, 李步高, 高鹏飞. 仔猪不同生长阶段粪便微生物多样性分析. 国外畜牧学(猪与禽), 2020, 40(6): 22-28, 29. |
LIU Y D, ZUO Z, QIN J J, YANG Y, CAI C B, ZHAO Y, GUO X H, CAO G Q, LI B G, GAO P F. Analysis of microbial diversity in feces of piglets at different growth stages. Animal Science Abroad-Pigs and Poultry 2020, 40(6): 22-28, 29. (in Chinese) | |
[41] |
ALAIN B PAJARILLO E, CHAE J P, BALOLONG M P, BUM KIM H, KANG D K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, 2014, 60(4): 140-146. doi: 10.2323/jgam. 60.140.
doi: 10.2323/jgam. 60.140 |
[42] |
LOW K E, XING X, MOOTE P E, INGLIS G D, VENKETACHALAM S, HAHN M G, KING M L, TéTARD-JONES C Y, JONES D R, WILLATS W G T, SLOMINSKI B A, ABBOTT D W. Combinatorial glycomic analyses to direct CAZyme discovery for the tailored degradation of canola meal non-starch dietary polysaccharides. Microorganisms, 2020, 8(12): 1888.
doi: 10.3390/microorganisms8121888 |
[43] |
LUIS A S, BRIGGS J, ZHANG X, FARNELL B, NDEH D, LABOUREL A, BASLÉ A, CARTMELL A, TERRAPON N, STOTT K, LOWE E C, MCLEAN R, SHEARER K, SCHÜCKEL J, VENDITTO I, RALET M C, HENRISSAT B, MARTENS E C, MOSIMANN S C, ABBOTT D W, GILBERT H J. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3(2): 210-219. doi: 10.1038/s41564-017-0079-1.
doi: 10.1038/s41564-017-0079-1 |
[44] |
ZHANG W, MA C, XIE P, ZHU Q, WANG X, YIN Y, KONG X. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. Journal of Applied Microbiology, 2019, 127(2): 354-369. doi: 10.1111/jam. 14304.
doi: 10.1111/jam. 14304 |
[45] |
TAMANAI-SHACOORI Z, SMIDA I, BOUSARGHIN L, LOREAL O, MEURIC V, FONG S B, BONNAURE-MALLET M, JOLIVET- GOUGEON A. Roseburia spp.: a marker of health? Future Microbiology, 2017, 12: 157-170.
doi: 10.2217/fmb-2016-0130 |
[46] |
GRZEŚKOWIAK Ł, DADI T H, ZENTEK J, VAHJEN W. Developing gut microbiota exerts colonisation resistance to Clostridium (syn. Clostridioides) difficile in piglets. Microorganisms, 2019, 7(8): 218.
doi: 10.3390/microorganisms7080218 |
[47] |
孙文静, 张丽, 肖娟, 彭永梅, 冉亚梅, 梁仁政, 湛斌. 粪菌移植治疗肠道艰难梭状芽孢杆菌感染1例. 重庆医学, 2021, 50(7): 1258-1260. doi: 10.3969/j.issn.1671-8348.2021.07.040.
doi: 10.3969/j.issn.1671-8348.2021.07.040 |
SUN W J, ZHANG L, XIAO J, PENG Y M, RAN Y M, LIANG R Z, ZHAN B. Treatment of Clostridium difficile infection by faecal bacteria transplantation: a case report. Chongqing Medical Journal 2021, 50(7): 1258-1260. doi: 10.3969/j.issn.1671-8348.2021.07.040. (in Chinese)
doi: 10.3969/j.issn.1671-8348.2021.07.040 |
[1] | 王金飞,杨国义,樊子菡,刘旗,张鹏程,任有蛇,杨春合,张春香. 饲粮中全株玉米青贮比例对杜湖杂交母羔生长性能、瘤胃发酵、养分消化率及血清学指标的影响[J]. 中国农业科学, 2021, 54(4): 831-844. |
[2] | 冯泽猛,包显颖,印遇龙. 胃肠道黏液层中Akkermansia muciniphila的定殖研究及其与宿主的相互作用[J]. 中国农业科学, 2016, 49(8): 1577-1584. |
[3] | 高理想,陈 亮,黄庆华,钟儒清,张立兰,张宏福. 大肠酶对猪饲料酶水解物能值的影响及与非淀粉多糖组分的关系[J]. 中国农业科学, 2016, 49(13): 2612-2621. |
[4] | 吴鑫,冯京海,张敏红,苏红光,贾安峰. 持续高温对育肥猪不同部位脂肪代谢的影响[J]. 中国农业科学, 2015, 48(5): 952-958. |
[5] | 徐龙龙, 吴杰, 郭军, 李继莲. 共生菌群在熊蜂生长发育过程中的动态变化[J]. 中国农业科学, 2014, 47(10): 2030-2037. |
[6] | 何科林, 萨仁娜, 高杰, 李东卫, 庄晓峰, 张宏福. 体外法优化肉鸡日粮非淀粉多糖酶[J]. 中国农业科学, 2012, 45(21): 4457-4464. |
[7] | 张国华, PomarC, 杨公社. 采用精准饲养技术评估生长育肥猪的赖氨酸需要量[J]. 中国农业科学, 2011, 44(18): 3840-3849. |
[8] | . 铜、维生素A及互作效应对肉仔鸡肠壁组织结构、肠道微生物和血清生长激素的影响[J]. 中国农业科学, 2009, 42(4): 1485-1493 . |
[9] | 高巍,孟庆翔. 生长猪消化道大肠杆菌、乳杆菌和双歧杆菌凝集素活性及其化学性质[J]. 中国农业科学, 2002, 35(9): 1119-1124 . |
|