中国农业科学 ›› 2021, Vol. 54 ›› Issue (3): 504-521.doi: 10.3864/j.issn.0578-1752.2021.03.005
收稿日期:
2020-04-23
接受日期:
2020-10-12
出版日期:
2021-02-01
发布日期:
2021-02-16
通讯作者:
刘兵
作者简介:
肖浏骏,E-mail: 基金资助:
XIAO LiuJun(),LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing()
Received:
2020-04-23
Accepted:
2020-10-12
Online:
2021-02-01
Published:
2021-02-16
Contact:
Bing LIU
摘要:
【目的】作物生长模型是预测和评估气候变化对作物生产力影响的重要量化工具,明确典型作物生长模型对小麦拔节期和孕穗期低温胁迫响应能力的不足,可以为进一步改进低温胁迫对小麦生产力影响的模拟算法提供指导。【方法】本研究将来自4套国际知名小麦生长模型(美国密歇根州立大学的CERES-Wheat、美国华盛顿州立大学的CropSyst、荷兰瓦赫宁根大学的WOFOST和法国国家农业科学研究院的STICS模型)的典型低温胁迫效应算法,与本课题组研发的小麦生长模拟模型WheatGrow相耦合,利用2012—2013年南京和2013—2015如皋不同品种(扬麦16和徐麦30)、不同温度水平(最低至-6℃)和持续时间(2、4、6 d)的人工气候室低温盆栽试验资料,检验和评价了原WheatGrow模型和耦合后低温胁迫效应算法的WheatGrow模型在拔节期和孕穗期低温胁迫下对小麦叶面积指数动态、茎生物量、地上部总生物量、籽粒产量等指标的预测能力。【结果】拔节—孕穗期低温胁迫明显降低了小麦叶面积指数、地上部生物量积累和籽粒产量,且随低温水平的降低和持续时间的增加降低幅度呈明显升高趋势。比较不同处理时期和品种发现,小麦生长发育及产量对孕穗期低温处理较拔节期低温处理更加敏感,扬麦16较徐麦30对低温胁迫更为敏感。耦合了4种低温胁迫效应算法的WheatGrow模型在模拟叶面积指数动态上较原WheatGrow模型有所改善,但模拟误差仍然较大,其中对孕穗期低温处理的模拟误差大于拔节期处理。4种低温胁迫算法均低估了低温胁迫对茎生物量以及成熟期地上部生物量积累的不利影响。综合比较4种低温胁迫算法的预测能力可以看出,对于叶面积指数和地上部生物量的动态模拟,CropSyst模型中的低温胁迫效应算法表现最好;对于茎生物量的动态模拟,WOFOST模型中的低温胁迫效应算法表现最好,特别是孕穗期低温处理;对于籽粒产量的模拟,STICS模型中的低温胁迫效应算法表现最好,其次是CropSyst模型。【结论】耦合低温胁迫效应算法后的WheatGrow模型,在模拟叶面积指数、茎生物量、地上部生物量和籽粒产量上均好于原WheatGrow模型,且在弱低温条件下的模拟效果好于强低温条件,但是4套算法由于没有考虑低温胁迫对茎秆的直接伤害、低温胁迫对干物质分配的影响以及低温胁迫后的恢复和补偿效应,因此在模拟茎生物量积累,以及模拟不同低温持续时间下的地上部生物量积累存在明显不足。此外,4套低温效应算法引入参数较多,为模型的参数化带来一定的困难,有待今后进一步改进和完善。研究结果对改进小麦生长模型对低温胁迫响应,降低气候变化背景下作物生产力的预测预警的不确定性具有重要意义。
肖浏骏,刘蕾蕾,邱小雷,汤亮,曹卫星,朱艳,刘兵. 小麦生长模型对拔节期和孕穗期低温胁迫响应能力的比较[J]. 中国农业科学, 2021, 54(3): 504-521.
XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat[J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
表1
多年人工气候室控温试验"
年份 Year | 品种 Cultivar | 站点 Site | 处理时期 Stage | 持续时间 Duration | 温度设置 (Tmax/Tmin) (℃) | 数据用途 Data utilization | |
---|---|---|---|---|---|---|---|
2012-2013 | 扬麦16 Yangmai16 (V1) 徐麦30 Xumai30 (V2) | 南京 Nanjing | 拔节期 Jointing (S1) 孕穗期 Booting (S2) | D1 (2 d) D2 (4 d) D3 (6 d) | T1(16/6), T2(13/3) T3(10/0), T4(13/-3) | 模型校正 Calibration | |
2013-2014 | 如皋Rugao | T1(16/6), T2(12/2) T3(8/-2), T4(4/-6) | 模型校正 Calibration | ||||
2014-2015 | 如皋Rugao | T1(16/6), T2(8/-2) T3(6/-4), T4(4/-6) | 模型检验 Validation |
表2
4种小麦生长模型中低温胁迫效应算法参数及取值"
模型 Model | 名称 Name | 单位 Unit | 描述 Description | 参数值 Parameter value | |||||
---|---|---|---|---|---|---|---|---|---|
默认值 Default value | 拔节期 Jointing (S1) | 孕穗期 Booting (S2) | |||||||
V1 | V2 | V1 | V2 | ||||||
CERES- Wheat | Tcoef | ℃ | 温度常数(叶面积)Temperature coefficient (LAI) | 10 | 0 | 0 | 0 | 0 | |
Thkill | ℃ | 初始致死温度(植株) Initial killing temperature (plants) | -6 | -0.5 | -1.5 | 0 | 0 | ||
CropSyst | LT0_HI | ℃ | 初始致死温度(收获指数) Initial killing temperature (HI) | -0.5 | 0 | 0 | 0 | 0 | |
LT100_HI | ℃ | 完全致死温度(收获指数) Maximum stress killing temperature (HI) | -2 | -14.3 | -16.6 | -8.34 | -10.2 | ||
Sensitivity | — | 温度敏感性(收获指数) Temperature sensitivity (HI) | 1 | 0.43 | 0.4 | 0.52 | 0.5 | ||
LT0_LAI | ℃ | 开始致死温度(叶面积) Initial killing temperature (LAI) | 0 | 0 | 0 | 0 | 0 | ||
LT100_LAI | ℃ | 完全致死温度(叶面积) Maximum stress killing temperature (LAI) | -3 | -14.3 | -16.6 | -8.34 | -10.2 | ||
WOFOST | LT50 | ℃ | 半致死温度(叶面积和植株) Temperature when 50% plants die (y) | — | -7.15 | -8.32 | -4.17 | -5.14 | |
KILLcoef | — | 致死速率系数 Steepness coefficient for logistic kill function | 1.189 | 1.74 | 1.95 | 1.189 | 1.189 | ||
STICS | Tgelveg10 | ℃ | 10%致死温度(叶面积) Temperature when 10% damage (LAI) | -4.5 | -4.5 | -5 | -2.5 | -3 | |
Tgelveg90 | ℃ | 90%致死温度(叶面积) Temperature when 90% damage (LAI) | -10 | -9.8 | -11.7 | -5.84 | -7.28 | ||
Tgelflo10 | ℃ | 10%致死温度(收获指数) Temperature when 10% decreases (HI) | -4.5 | -5.8 | -6 | -3.5 | -4 | ||
Tgelflo90 | ℃ | 90%致死温度(收获指数) Temperature when 90% decreases (HI) | -6.5 | -11.5 | -12 | -6.8 | -7.5 |
表3
原WheatGrow模型和耦合4种低温胁迫效应算法后的WheatGrow模型对叶面积指数和茎生物量动态预测误差的统计检验"
处理 Treatment (Tmax/Tmin) | 模型 Model | 叶面积指数 LAI | 茎生物量 Stem biomass | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
拔节期 Jointing (S1) | 孕穗期 Booting (S2) | 拔节期 Jointing (S1) | 孕穗期 Booting (S2) | ||||||||||||||||||
MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | ||
8/-2℃ | a | 0.5 | 0.6 | 23.3 | 0.97 | 0.94 | 0.8 | 0.9 | 35.1 | 0.96 | 0.96 | 626.6 | 791.0 | 13.0 | 0.98 | 0.94 | 795 | 934.7 | 14 | 0.91 | 0.85 |
b | 0.5 | 0.6 | 21.6 | 0.97 | 0.93 | 0.7 | 0.8 | 30.5 | 0.96 | 0.96 | 536.2 | 678.1 | 11.2 | 0.98 | 0.95 | 594.1 | 749.6 | 11.2 | 0.94 | 0.84 | |
c | 0.5 | 0.6 | 21.3 | 0.97 | 0.93 | 0.6 | 0.7 | 28.0 | 0.97 | 0.95 | 534.4 | 675.5 | 11.1 | 0.98 | 0.94 | 502.9 | 643.9 | 9.6 | 0.95 | 0.84 | |
d | 0.5 | 0.6 | 23.3 | 0.97 | 0.94 | 0.6 | 0.8 | 30.1 | 0.97 | 0.95 | 626.6 | 791.0 | 13.0 | 0.98 | 0.94 | 582.9 | 739.3 | 11 | 0.94 | 0.81 | |
e | 0.5 | 0.6 | 22.0 | 0.97 | 0.93 | 0.7 | 0.8 | 31.4 | 0.96 | 0.96 | 575.7 | 731.2 | 12.0 | 0.98 | 0.94 | 638.5 | 786.9 | 11.7 | 0.93 | 0.85 | |
6/-4℃ | a | 0.7 | 0.8 | 32.3 | 0.95 | 0.92 | 1.1 | 1.3 | 58 | 0.9 | 0.94 | 842.7 | 982.4 | 17.4 | 0.96 | 0.96 | 2332 | 2495 | 49.6 | 0.74 | 0.67 |
b | 0.6 | 0.7 | 27.9 | 0.95 | 0.86 | 0.6 | 0.7 | 33.4 | 0.95 | 0.89 | 379.2 | 482.7 | 8.6 | 0.99 | 0.96 | 1096 | 1237 | 24.6 | 0.85 | 0.82 | |
c | 0.5 | 0.6 | 26.0 | 0.96 | 0.89 | 0.6 | 0.7 | 33.1 | 0.95 | 0.88 | 445.9 | 569.0 | 10.1 | 0.99 | 0.96 | 997.8 | 1158 | 23 | 0.85 | 0.8 | |
d | 0.5 | 0.7 | 27.2 | 0.96 | 0.9 | 0.6 | 0.7 | 33.7 | 0.95 | 0.84 | 565 | 708.7 | 12.6 | 0.98 | 0.96 | 617.5 | 774.1 | 15.4 | 0.92 | 0.84 | |
e | 0.6 | 0.7 | 28.4 | 0.96 | 0.91 | 0.7 | 0.8 | 35.1 | 0.95 | 0.91 | 676.3 | 820.7 | 14.6 | 0.97 | 0.96 | 1271 | 1407 | 28 | 0.82 | 0.82 | |
4/-6℃ | a | 0.8 | 0.9 | 43.0 | 0.92 | 0.91 | 2.0 | 2.3 | 185.0 | 0.72 | 0.69 | 1389 | 1639.0 | 32.7 | 0.9 | 0.9 | 5073 | 5384 | 249 | 0.73 | 0.1 |
b | 0.7 | 0.8 | 37.9 | 0.91 | 0.75 | 0.8 | 1.1 | 85.6 | 0.79 | 0.5 | 529.3 | 641.7 | 12.8 | 0.98 | 0.93 | 2437 | 2749 | 127.2 | 0.68 | 0.22 | |
c | 0.5 | 0.6 | 29.2 | 0.95 | 0.85 | 1.0 | 1.2 | 93.2 | 0.78 | 0.5 | 653.8 | 881.7 | 17.6 | 0.96 | 0.92 | 2786 | 3089 | 142.9 | 0.7 | 0.1 | |
d | 0.5 | 0.6 | 29.0 | 0.95 | 0.85 | 0.6 | 1 | 78.8 | 0.75 | 0.32 | 632.0 | 835.4 | 16.7 | 0.97 | 0.93 | 1244 | 1484 | 68.6 | 0.68 | 0.37 | |
e | 0.6 | 0.7 | 31.7 | 0.95 | 0.87 | 0.9 | 1.1 | 87.6 | 0.79 | 0.5 | 871.5 | 1106.0 | 22.1 | 0.95 | 0.93 | 2525 | 2856 | 132.1 | 0.68 | 0.16 | |
低于0℃ Tmin<0℃ | a | 0.7 | 0.8 | 32.7 | 0.95 | 0.91 | 1.3 | 1.6 | 81.7 | 0.85 | 0.78 | 952.7 | 1194.0 | 21.4 | 0.95 | 0.91 | 2733 | 3468 | 74.9 | 0.67 | 0.15 |
b | 0.6 | 0.7 | 28.9 | 0.95 | 0.84 | 0.7 | 0.9 | 44.1 | 0.94 | 0.86 | 481.6 | 606.8 | 10.9 | 0.99 | 0.94 | 1376 | 1794 | 38.7 | 0.83 | 0.67 | |
c | 0.5 | 0.6 | 25.3 | 0.97 | 0.9 | 0.7 | 0.9 | 45.2 | 0.93 | 0.84 | 544.7 | 720.5 | 12.9 | 0.98 | 0.94 | 1429 | 1941 | 41.9 | 0.79 | 0.58 | |
d | 0.5 | 0.6 | 26.3 | 0.96 | 0.9 | 0.6 | 0.8 | 42.2 | 0.94 | 0.79 | 607.9 | 780.1 | 14.0 | 0.98 | 0.95 | 815 | 1056 | 22.8 | 0.95 | 0.84 | |
e | 0.5 | 0.7 | 27.1 | 0.96 | 0.91 | 0.7 | 0.9 | 45.5 | 0.94 | 0.86 | 707.8 | 900.1 | 16.2 | 0.97 | 0.94 | 1478 | 1894 | 40.9 | 0.82 | 0.66 |
表4
原WheatGrow模型和耦合4种低温胁迫效应算法后的WheatGrow模型对成熟期地上部生物量和产量预测误差的统计检验"
处理 Treatment (Tmax/Tmin) | 模型 Model | 地上部生物量 Above ground biomass | 籽粒产量 Grain yield | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
拔节期 Jointing (S1) | 孕穗期 Booting (S2) | 拔节期 Jointing (S1) | 孕穗期 Booting (S2) | ||||||||||||||||||
MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | MAE (m2·m-2) | RMSE (m2·m-2) | NRMSE (%) | D-index | R2 | ||
8/-2℃ | a | 2096 | 2262 | 17.4 | 0.71 | 0.01 | 2692 | 2883 | 23.1 | 0.72 | 0.33 | 1113 | 1220 | 24 | 0.71 | 0.05 | 1211 | 1335 | 26.7 | 0.71 | 0.2 |
b | 1778 | 1934 | 14.8 | 0.7 | 0.06 | 2173 | 2284 | 18.3 | 0.73 | 0.24 | 975.3 | 1077 | 21.2 | 0.71 | 0.05 | 998.6 | 1080 | 21.6 | 0.72 | 0.52 | |
c | 974.5 | 1196 | 9.2 | 0.62 | 0.12 | 759.6 | 915.7 | 7.3 | 0.81 | 0.52 | 334.4 | 455.6 | 9 | 0.74 | 0.29 | 412.1 | 495.2 | 9.9 | 0.84 | 0.7 | |
d | 2096 | 2262 | 17.4 | 0.71 | 0.01 | 1988 | 2094 | 16.7 | 0.73 | 0.31 | 1113 | 1220 | 24 | 0.71 | 0.05 | 922.9 | 1001 | 20 | 0.72 | 0.45 | |
e | 1192 | 1328 | 10.2 | 0.69 | 0.41 | 1239 | 1343 | 10.7 | 0.74 | 0.45 | 371.5 | 453.3 | 8.9 | 0.73 | 0.59 | 189.5 | 240.8 | 4.8 | 0.94 | 0.8 | |
6/-4℃ | a | 3240 | 3323 | 28.4 | 0.74 | 0.02 | 6274 | 6480 | 73.5 | 0.74 | 0.16 | 1838 | 1876 | 43.7 | 0.74 | 0.08 | 3332 | 3391 | 118.8 | 0.74 | 0.11 |
b | 1696 | 1769 | 15.1 | 0.73 | 0.53 | 3890 | 3957 | 44.9 | 0.74 | 0.8 | 1204 | 1228 | 28.6 | 0.74 | 0.51 | 2356 | 2372 | 83.1 | 0.75 | 0.8 | |
c | 622.5 | 732.3 | 6.3 | 0.78 | 0.41 | 1014 | 1148 | 13 | 0.84 | 0.8 | 475.6 | 630.9 | 14.7 | 0.72 | 0.66 | 509.7 | 566.4 | 19.9 | 0.86 | 0.81 | |
d | 2640 | 2708 | 23.2 | 0.74 | 0.45 | 2550 | 2657 | 30.1 | 0.74 | 0.78 | 1591 | 1618 | 37.7 | 0.74 | 0.44 | 1807 | 1832 | 64.2 | 0.74 | 0.79 | |
e | 1370 | 1478 | 12.6 | 0.72 | 0.47 | 1723 | 1858 | 21.1 | 0.76 | 0.8 | 407.5 | 484.9 | 11.3 | 0.75 | 0.52 | 466.8 | 581.5 | 20.4 | 0.86 | 0.81 | |
4/-6℃ | a | 4903 | 5023 | 50.6 | 0.74 | 0 | 11666 | 11800 | 366.7 | 0.75 | 0.01 | 2650 | 2705 | 79.1 | 0.74 | 0.06 | 5284 | 5311 | 650.9 | 0.75 | 0.04 |
b | 1692 | 1836 | 18.5 | 0.72 | 0.66 | 6260 | 6381 | 198.3 | 0.74 | 0.79 | 1333 | 1384 | 40.5 | 0.74 | 0.52 | 3071 | 3129 | 383.6 | 0.74 | 0.8 | |
c | 609.7 | 734.9 | 7.4 | 0.89 | 0.77 | 4247 | 4314 | 134.1 | 0.74 | 0.82 | 643.7 | 776.1 | 22.7 | 0.77 | 0.72 | 520.7 | 656.6 | 80.5 | 0.81 | 0.85 | |
d | 3161 | 3228 | 32.5 | 0.74 | 0.62 | 2639 | 3070 | 95.4 | 0.74 | 0.82 | 1937 | 1972 | 57.7 | 0.74 | 0.48 | 1539 | 1754 | 214.9 | 0.71 | 0.84 | |
e | 1562 | 1641 | 16.5 | 0.73 | 0.8 | 3358 | 3468 | 107.8 | 0.74 | 0.77 | 407.7 | 482.4 | 14.1 | 0.85 | 0.7 | 481.5 | 559.2 | 68.5 | 0.82 | 0.72 | |
低于0 ℃ Tmin<0℃ | a | 3413 | 3714 | 32.2 | 0.72 | 0.1 | 6877 | 7949 | 97.2 | 0.69 | 0.07 | 1867 | 2027 | 47.5 | 0.72 | 0.07 | 3276 | 3719 | 128.6 | 0.7 | 0.1 |
b | 1722 | 1847 | 16 | 0.79 | 0.79 | 4108 | 4531 | 55.4 | 0.75 | 0.85 | 1171 | 1236 | 29 | 0.74 | 0.77 | 2142 | 2351 | 81.3 | 0.73 | 0.79 | |
c | 735.5 | 914 | 7.9 | 0.92 | 0.79 | 2007 | 2631 | 32.2 | 0.85 | 0.9 | 484.6 | 634.5 | 14.9 | 0.9 | 0.83 | 480.9 | 576.5 | 19.9 | 0.97 | 0.9 | |
d | 2632 | 2761 | 23.9 | 0.73 | 0.75 | 2392 | 2637 | 32.2 | 0.91 | 0.92 | 1547 | 1633 | 38.3 | 0.73 | 0.72 | 1423 | 1574 | 54.4 | 0.85 | 0.86 | |
e | 1375 | 1488 | 12.9 | 0.82 | 0.83 | 2107 | 2400 | 29.3 | 0.9 | 0.95 | 395.6 | 473.7 | 11.1 | 0.93 | 0.83 | 379.3 | 486.1 | 16.8 | 0.98 | 0.96 |
[1] | IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge, UK: Cambridge University Press, 2012. |
[2] | XIAO L, LIU L, ASSENG S, XIA Y, TANG L, LIU B, CAO W, ZHU Y. Estimating spring frost and its impact on yield across winter wheat in China. Agricultural and Forest Meteorology, 2018,260/261:154-164. |
[3] | 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020,40(2):243-250. |
CHEN X, LIN T, LIN F F, ZHANG Y, SU H, HU Y M, SONG Y H, WEI F Z, LI J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in huanghuai region. Journal of Triticeae Crops, 2020,40(2):243-250. (in Chinese) | |
[4] | WU Y, ZHONG X, HU X, REN D, LV G, WEI C, SONG J. Frost affects grain yield components in winter wheat. New Zealand Journal of Crop and Horticultural Science, 2014,42(3):194-204. |
[5] | MARTINO D, ABBATE P. Frost damage on grain number in wheat at different spike developmental stages and its modelling. European Journal of Agronomy, 2019,103:13-23. |
[6] | 刘蕾蕾, 纪洪亭, 刘兵, 马吉锋, 肖浏骏, 汤亮, 曹卫星, 朱艳. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响. 中国农业科学, 2018,51(23):4434-4448. |
LIU L L, JI H T, LIU B, MA J F, XIAO L J, TANG L, CAO W X, ZHU Y. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll fluorescence characteristics in wheat leaf. Scientia Agricultura Sinica, 2018,51(23):4434-4448. (in Chinese) | |
[7] | 武永峰, 胡新, 任德超, 史萍, 游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系. 中国农业科学, 2018,51(18):3470-3485. |
WU Y F, HU X, REN D C, SHI P, YOU S C. Reduction of plant height in winter wheat and its relationship with grain yield under late frost stress. Scientia Agricultura Sinica, 2018,51(18):3470-3485. (in Chinese) | |
[8] | ZHENG B, CHENU K, FERNANDA DRECCER M, CHAPMAN S C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 2012,18(9):2899-2914. |
[9] | ZHENG B, CHAPMAN S C, CHRISTOPHER J T, FREDERIKS T M, CHENU K. Frost trends and their estimated impact on yield in the Australian wheatbelt. Journal of Experimental Botany, 2015,66(12):3611-3623. |
[10] | 郑冬晓, 杨晓光, 赵锦, 慕臣英, 龚宇. 气候变化背景下黄淮冬麦区冬季长寒型冻害时空变化特征. 生态学报, 2015,35(13):4338-4346. |
ZHENG D X, YANG X G, ZHAO J, MU C Y, GONG Y. Spatial and temporal patterns of freezing injury during winter in Huang Huai winter wheat area under climate change. Acta Ecologica Sinica, 2015,35(13):4338-4346. (in Chinese) | |
[11] | ASSENG S, MARTRE P, MAIORANO A, RöTTER R P, O’LEARY G J, FITZGERALD G J, GIROUSSE C, MOTZO R, GIUNTA F, BABAR M A . Climate change impact and adaptation for wheat protein. Global Change Biology, 2019,25(1):155-173. |
[12] | RÖTTER R, APPIAH M, FICHTLER E, KERSEBAUM K, TRNKA M, HOFFMANN M. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review. Field Crops Research, 2018,221:142-156. |
[13] | WANG E, MARTRE P, ZHAO Z, EWERT F, MAIORANO A, RöTTER R P, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, REYNOLDS M P, ALDERMAN P D, AGGARWAL P K, ANOTHAI J, BASSO B, BIERNATH C, CAMMARANO D, CHALLINOR A J, DE SANCTIS G, DOLTRA J, DUMONT B, FERERES E, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KOEHLER A-K, LIU L, MÜLLER C, NARESH KUMAR S, NENDEL C, O'LEARY G, OLESEN J E, PALOSUO T, PRIESACK E, EYSHI REZAEI E, RIPOCHE D, RUANE A C, SEMENOV M A, SHCHERBAK I, STÖCKLE C, STRATONOVITCH P, STRECK T, SUPIT I, TAO F, THORBURN P, WAHA K, WALLACH D, WANG Z, WOLF J, ZHU Y, ASSENG S. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017,3:17102. |
[14] | LIU B, LIU L, ASSENG S, ZOU X, LI J, CAO W, ZHU Y. Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agricultural and Forest Meteorology, 2016,222:45-58. |
[15] | LECOMTE C, GIRAUD A, AUBERT V. Testing a predicting model for frost resistance of winter wheat under natural conditions. Agronomie, 2003,23(1):51-66. |
[16] | 陈曦, 杜克明, 魏湜, 孙忠富, 郑飞翔, 李晶, 顾万荣. 小麦霜冻害模拟模型研究进展. 麦类作物学报, 2015,35(2):285-291. |
CHEN X, DU K M, WEI S, SUN Z F, ZHENG F X, LI J, GU W R. Advance on simulation modeling of frost and freezy injury in wheat. Journal of Triticeae Crops, 2015,35(2):285-291. (in Chinese) | |
[17] | BERGJORD OLSEN A K, PERSSON T, DE WIT A, NKURUNZIZA L, SINDHøJ E, ECKERSTEN H. Estimating winter survival of winter wheat by simulations of plant frost tolerance. Journal of Agronomy and Crop Science, 2018,204(1):62-73. |
[18] | 马玉平, 王石立, 张黎. 针对华北小麦越冬的WOFOST模型改进. 中国农业气象, 2005,26(3):145-149. |
MA Y P, WANG S L, ZHANG L. Study on improvement of WOFOST against overwinter of wheat in north China. Chinese Journal of Agrometeorology, 2005,26(3):145-149. (in Chinese) | |
[19] | 张雪芬, 余卫东, 王春乙, 白凌霞. WOFOST模型在冬小麦晚霜冻害评估中的应用. 自然灾害学报, 2006(S1):337-341. |
ZHANG X F, YU W D, WANG C Y, BAI L X. Application of WOFOST model to assessment of winter wheat's chilling damage by late frost. Journal of Natural Disasters, 2006(S1):337-341. (in Chinese) | |
[20] | PERSSON T, BERGJORD OLSEN A K, NKURUNZIZA L, SINDHöJ E, ECKERSTEN H . Estimation of crown temperature of winter wheat and the effect on simulation of frost tolerance. Journal of Agronomy and Crop Science, 2017,203(2):161-176. |
[21] | SAVDIE I, WHITEWOOD R, RADDATZ R L, FOWLER D B. Potential for winter wheat production in western Canada: A CERES model winterkill risk assessment. Canadian Journal of Plant Science, 1991,71(1):21-30. |
[22] | STöCKLE C O. Temperature routines in CropSyst. Proceedings of the Workshop on Modeling Wheat Response to High Temperature. Mexico, International Maize and Wheat Improvement Center (CIMMYT), 2013: 47. |
[23] | BRISSON N, GARY C, JUSTES E, ROCHE R, MARY B, RIPOCHE D, ZIMMER D, SIERRA J, BERTUZZI P, BURGER P, BUSSIèRE F, CABIDOCHE Y M, CELLIER P, DEBAEKE P, GAUDILLèRE J P, HéNAULT C, MARAUX F, SEGUIN B, SINOQUET H. An overview of the crop model stics. European Journal of Agronomy, 2003,18(3/4):309-332. |
[24] | BEAUDOIN N, MARY B, LAUNAY M, BRISSON N, Conceptual basis, formalisations and parameterization of the STICS crop model. France: Quae Editions, 2009. |
[25] | KEATING B A, CARBERRY P S, HAMMER G L, PROBERT M E, ROBERTSON M J, HOLZWORTH D, HUTH N I, HARGREAVES J N, MEINKE H, HOCHMAN Z. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003,18(3):267-288. |
[26] | FLOHR B M, HUNT J R, KIRKEGAARD J A, EVANS J R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 2017,209:108-119. |
[27] | BRACHO-MUJICA G, HAYMAN P T, OSTENDORF B. Modelling long-term risk profiles of wheat grain yield with limited climate data. Agricultural Systems, 2019,173:393-402. |
[28] | BARLOW K M, CHRISTY B P, O’LEARY G J, RIFFKIN P A, NUTTALL J G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 2015,171:109-119. |
[29] | LUO Q. Temperature thresholds and crop production: A review. Climatic Change, 2011,109(3/4):583-598. |
[30] | JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003,18(3/4):235-265. |
[31] | RITCHIE J. Description and performance of CERES wheat: A user-oriented wheat yield model. ARS Wheat Yield Project, US Department of Agriculture, Agricultural Research Service, 1985,38:159-175. |
[32] | STÖCKLE C O, DONATELLI M, NELSON R. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 2003,18(3/4):289-307. |
[33] | DE WIT A, BOOGAARD H, FUMAGALLI D, JANSSEN S, KNAPEN R, VAN KRAALINGEN D, SUPIT I, VAN DER WIJNGAART R, VAN DIEPEN K. 25 years of the WOFOST cropping systems model. Agricultural Systems, 2019,168:154-167. |
[34] | 陈振林, 张建平, 王春乙, 郑江平. 应用WOFOST模型模拟低温与干旱对玉米产量的综合影响. 中国农业气象, 2007,28(4):440-442, 445. |
CHEN Z L, ZHANG J P, WANG C Y, ZHENG J P. Application of WOFOST model in simulation of integrated impacts of low temperature and drought on maize yield. Chinese Journal of Agrometeorology, 2007,28(4):440-442, 445. (in Chinese) | |
[35] | BRISSON N, RUGET F, GATE P, LORGEOU J, NICOULLAUD B, TAYOT X, PLENET D, JEUFFROY M-H, BOUTHIER A, RIPOCHE D, MARY B, JUSTES E. STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 2002,22(1):69-92. |
[36] | WILLMOTT C J, ACKLESON S G, DAVIS R E, FEDDEMA J J, KLINK K M, LEGATES D R, O'DONNELL J, ROWE C M. Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 1985,90:8995-9005. |
[37] | BELLOCCHI G, RIVINGTON M, DONATELLI M, MATTHEWS K. Validation of biophysical models: ISSUES and methodologies. A review. Agronomy for Sustainable Development, 2010,30(1):109-130. |
[38] | 李军玲, 余卫东, 张弘, 郭其乐. 冬小麦越冬中期冻害高光谱敏感指数研究. 中国农业气象, 2014,35(6):708-716. |
LI J L, YU W D, ZHANG H, GUO Q L. Study on hyperspectral sensitivity index of winter wheat after freezing injury at mid-winter period. Chinese Journal of Agrometeorology, 2014,35(6):708-716. (in Chinese) | |
[39] | ZHENG D, YANG X, MíNGUEZ M I, MU C, HE Q, WU X. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agricultural and Forest Meteorology, 2018,260/261:1-8. |
[40] | VICO G, HURRY V, WEIH M. Snowed in for survival: Quantifying the risk of winter damage to overwintering field crops in northern temperate latitudes. Agricultural and Forest Meteorology, 2014,197:65-75. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[10] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[11] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[12] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[13] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[14] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[15] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
|