中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 275-286.doi: 10.3864/j.issn.0578-1752.2023.02.006
王炫栋(),宋振,兰赫婷,江樱姿,齐文杰,刘晓阳,蒋冬花(
)
收稿日期:
2022-09-02
接受日期:
2022-10-17
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
蒋冬花,E-mail:作者简介:
王炫栋,E-mail:基金资助:
WANG XuanDong(),SONG Zhen,LAN HeTing,JIANG YingZi,QI WenJie,LIU XiaoYang,JIANG DongHua(
)
Received:
2022-09-02
Accepted:
2022-10-17
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】分离、筛选杨梅园植物根系和根际土壤优势放线菌,探究放线菌种群数量与分布的季节性特征,分析其在生物防治与促进植物生长上的应用潜力。【方法】采集不同季节杨梅园内植物根系及根际土壤样品,采用稀释平板法进行优势放线菌的分离纯化。采用选择培养基分析优势放线菌固氮、溶磷、解钾等植物根际促生菌(PGPR)特性,CAS平板检测铁载体产生能力,Salkowski显色法检测吲哚乙酸(IAA)产生能力,比色法检测ACC脱氨酶活性。对具备优良促生特性的菌株进行试管促生效应鉴定,并采用平板对峙法和发酵液牛津杯法分析其抗菌活性。最后,对特性良好的菌株通过形态观测、生理生化试验和16S rDNA序列分析确定其分类地位。【结果】从不同海拔的两个杨梅园中共分离到优势放线菌127株,其中植物根系32株、根际土壤95株。与春、夏季相比,秋、冬季分离到的放线菌数量较多种类较丰富,抑菌和促生能力较强。且高海拔地区分离的优势放线菌数量在春、夏两季显著多于低海拔地区,而秋、冬季低海拔地区分离到的放线菌数量超过高海拔地区,并且远超该地区春、夏两季分离到放线菌的总数。最终得到46株不同种类放线菌,经过PGPR特性分析,35株放线菌具有明显的促生特性。其中菌株Sz-11具备固氮、溶无机磷、溶有机磷、产生铁载体、产生IAA及产生ACC脱氨酶6种促生特性,试管鉴定结果显示其能有效促进水稻幼苗生长发育,接种菌株Sz-11的幼苗株高及根长增幅分别为36.08%和22.70%。同时,菌株Sz-11对多种植物病原细菌均表现出较好的拮抗活性,对水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,Xoo)、水稻细菌性条斑病菌(Xanthomonas oryzae pv. oryzicola,Xooc)拮抗作用较为显著且稳定。通过一系列观测、试验结合测序分析结果,初步鉴定为沙阿霉素链霉菌(Streptomyces zaomyceticus)。【结论】杨梅园土壤优势放线菌数量与分布受季节、海拔等因素影响,可培养放线菌中具备促生功能的菌株占比较高,沙阿霉素链霉菌Sz-11兼具良好的防病、促生功能,有望开发成生物肥料和生物防治制剂应用于水稻生产。
王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能[J]. 中国农业科学, 2023, 56(2): 275-286.
WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function[J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
表1
分离所得127株放线菌分布情况"
分离株的定殖分布 Colonization distribution of isolates | 春季Spring | 夏季Summer | 秋季Autumn | 冬季Winter | ||||
---|---|---|---|---|---|---|---|---|
采样地1 Sampling site 1 | 采样地2 Sampling site 2 | 采样地1 Sampling site 1 | 采样地2 Sampling site 2 | 采样地1 Sampling site 1 | 采样地2 Sampling site 2 | 采样地1 Sampling site 1 | 采样地2 Sampling site 2 | |
根系分离株数量 Number of isolates colonized in root | 3 | 5 | 1 | 3 | 3 | 6 | 5 | 6 |
根际分离株数量 Number of isolates colonized in rhizosphere | 9 | 11 | 4 | 8 | 20 | 12 | 17 | 14 |
总量Total | 12 | 16 | 5 | 11 | 23 | 18 | 22 | 20 |
表2
35株代表性放线菌促生特性"
菌株编号 Strain number | 固氮 Nitrogen fixation | 溶磷Phosphorus solubilization | 解钾 Potassium solubilization | 产铁载体Siderophore production | 产吲哚乙酸 IAA production | 产ACC脱氨酶 ACC deaminase production | |
---|---|---|---|---|---|---|---|
无机磷 Inorganic phosphorus | 有机磷 Organic phosphorus | ||||||
St-2 | + | - | - | - | + | + | - |
St-9-1 | - | ++ | + | - | - | + | - |
St-11 | ++ | - | - | - | + | - | + |
St-12 | + | - | - | - | - | + | - |
Sl-6 | - | - | - | + | + | + | - |
Sl-8 | + | + | + | - | - | - | - |
Sl-4-2 | + | - | - | - | - | + | + |
Sp-1 | + | - | - | - | - | + | - |
Sp-3 | - | + | - | - | - | + | - |
Sp-8 | + | + | + | - | ++ | - | - |
Sp-11 | ++ | - | - | - | + | + | + |
Sp-12 | - | - | - | - | - | + | - |
Sp-16 | - | - | - | + | - | - | - |
Sp-18-2 | ++ | - | - | + | + | + | - |
Sp-19 | + | - | - | - | - | - | - |
Sp-22 | +++ | + | + | - | + | + | ++ |
Sz-6-2 | - | - | - | - | - | + | - |
Sz-8 | - | - | - | - | - | + | - |
Sz-9 | - | - | - | - | - | + | - |
Sz-11 | +++ | ++ | + | - | ++ | + | ++ |
Sz-13 | + | - | - | - | - | - | - |
Sz-18 | + | + | - | - | - | + | - |
Sq-21 | - | - | - | - | - | + | - |
Sq-14 | - | + | - | - | - | - | - |
Sq-8-3 | + | + | + | - | - | + | + |
Sw-2-3 | - | - | - | + | ++ | + | - |
Sw-3 | ++ | - | - | - | + | + | - |
Sw-6 | + | + | + | - | - | + | + |
Sm-3-3 | - | + | - | + | - | + | - |
Sm-5 | ++ | - | - | + | ++ | - | + |
Sm-11-2 | - | + | - | - | - | + | - |
Sk-11 | - | + | - | - | + | - | - |
Sk-19-3 | + | - | - | - | - | + | - |
Sf-1-2 | - | + | + | + | ++ | - | - |
Sf-14 | ++ | - | - | + | - | + | + |
表3
21株放线菌对6种病原菌的拮抗活性"
菌株编号 Strain number | 抑制水稻白叶枯病菌Inhibition against Xoo | 抑制水稻细菌性 条斑病菌 Inhibition against Xooc | 抑制大豆斑疹病菌Inhibition against Xag | 抑制菜豆疫病菌 Inhibition against Xap | 抑制大豆斑点病菌Inhibition against Psg | 抑制烟草青枯病菌 Inhibition against R. solanacearum |
---|---|---|---|---|---|---|
St-2 | + | - | - | - | - | - |
St-9-1 | - | - | +++ | + | + | - |
St-11 | +++ | + | - | - | + | - |
Sl-6 | + | - | - | - | - | + |
Sl-8 | ++ | - | - | - | - | - |
Sl-4-2 | - | - | - | - | - | - |
Sp-8 | ++ | + | - | - | + | - |
Sp-11 | - | - | ++ | ++ | + | - |
Sp-18-2 | - | - | + | - | ++ | - |
Sp-22 | ++++ | +++ | + | - | - | - |
Sz-11 | ++++ | ++++ | ++ | ++ | + | - |
Sz-18 | ++ | - | + | - | - | - |
Sq-8-3 | + | + | - | - | + | + |
Sw-2-3 | - | - | - | - | - | - |
Sw-3 | + | - | + | + | - | +++ |
Sw-6 | +++ | + | - | - | ++ | ++ |
Sm-3-3 | - | - | ++ | + | ++ | - |
Sm-5 | + | - | - | - | - | + |
Sk-19-3 | - | - | - | + | - | ++ |
Sf-1-2 | - | - | ++ | ++ | - | - |
Sf-14 | +++ | - | + | + | - | - |
表4
菌株Sz-11对不同碳源、氮源利用情况"
碳源 Carbon source | 试验结果 Test result | 氮源 Nitrogen source | 试验结果 Test result | |
---|---|---|---|---|
葡萄糖Glucose | +++ | 蛋白胨Peptone | +++ | |
α-乳糖α-Lactose | +++ | 硝酸钾KNO3 | ++ | |
壳聚糖Chitosan | ++ | 硫酸铵(NH4)2SO4 | ++ | |
D-木糖D-Xylose | ++ | 谷氨酸Glutamate | ++ | |
蔗糖Sucrose | +++ | 甲硫氨酸Methionine | ++ | |
D-麦芽糖D-Maltose | +++ | 赖氨酸Lysine | ++ | |
果糖Fructose | + | 亮氨酸Leucine | ++ | |
L-阿拉伯糖L-Arabinose | + | 组氨酸Histidine | +++ |
[1] |
何新华, 陈力耕, 陈怡, 郭长禄. 中国杨梅资源及利用研究评述. 果树学报, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017.
doi: 10.13925/j.cnki.gsxb.2004.05.017 |
HE X H, CHEN L G, CHEN Y, GUO C L. Review on germplasm resources of Myrica and their exploitation in China. Journal of Fruit Science, 2004, 21(5): 467-471. doi: 10.13925/j.cnki.gsxb.2004.05.017. (in Chinese)
doi: 10.13925/j.cnki.gsxb.2004.05.017 |
|
[2] |
冯健玲, 何新华, 李一伟, 李峰, 秦荣耀. 广西杨梅根瘤Frankia菌的分离和培养特性研究. 西南农业学报, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059.
doi: 10.16213/j.cnki.scjas.2012.01.059 |
FENG J L, HE X H, LI Y W, LI F, QIN R Y. Isolation and cultural features of Frankia on root nodule of red bayberry in Guangxi. Southwest China Journal of Agricultural Sciences, 2012, 25(1): 236-239. doi: 10.16213/j.cnki.scjas.2012.01.059. (in Chinese)
doi: 10.16213/j.cnki.scjas.2012.01.059 |
|
[3] |
张勇, 刘海英, 吕爱华, 吴翠蓉, 吴家森, 傅伟军, 王晓晓, 蒋仲龙. 杨梅根系和土壤微生物量碳、氮、磷生态化学计量随林龄的变化. 生态科学, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010.
doi: 10.14108/j.cnki.1008-8873.2022.01.010 |
ZHANG Y, LIU H Y, LÜ A H, WU C R, WU J S, FU W J, WANG X X, JIANG Z L. The variation of ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in root system of Myrica rubra and its soil microbial biomass with different stand ages. Ecological Science, 2022, 41(1): 84-90. doi: 10.14108/j.cnki.1008-8873.2022.01.010. (in Chinese)
doi: 10.14108/j.cnki.1008-8873.2022.01.010 |
|
[4] |
PEREZ-MONTANO F, ALIAS-VILLEGAS C, BELLOGIN R A, DEL CERRO P, ESPUNY M R, JIMENEZ-GUERRERO I, LOPEZ- BAENA F J, OLLERO F J, CUBO T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 2014, 169(5/6): 325-336. doi: 10.1016/j.micres.2013.09.011.
doi: 10.1016/j.micres.2013.09.011 |
[5] |
NGALIMAT M S, MOHD HATA E, ZULPERI D, ISMAIL S I, ISMAIL M R, MOHD ZAINUDIN N A I, SAIDI N B, YUSOF M T. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms, 2021, 9(4): 682. doi: 10.3390/microorganisms9040682.
doi: 10.3390/microorganisms9040682 |
[6] |
穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展. 生命科学, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014.
doi: 10.13376/j.cbls/2022014 |
MU W Q, KANG S M, LI P L. Advances in rhizosphere growth- promoting bacteria function on plant growth facilitation and their mechanisms. Chinese Bulletin of Life Sciences, 2022, 34(2): 118-127. doi: 10.13376/j.cbls/2022014. (in Chinese)
doi: 10.13376/j.cbls/2022014 |
|
[7] |
LIU H, CHEN G H, SUN J J, CHEN S, FANG Y, REN J H. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants. Frontiers in Microbiology, 2022, 13: 792876. doi: 10.3389/fmicb.2022.792876.
doi: 10.3389/fmicb.2022.792876 |
[8] |
MEENA M, SWAPNIL P, DIVYANSHU K, KUMAR S, HARISH, TRIPATHI Y N, ZEHRA A, MARWAL A, UPADHYAY R S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 2020, 60(10): 828-861. doi: 10.1002/jobm.202000370.
doi: 10.1002/jobm.202000370 |
[9] |
周亚男, 韩小斌, 魏可可, 芶剑渝, 王先勃, 张成省, 郑艳芬. 烟草根际可培养微生物多样性及防病促生菌的筛选. 微生物学通报, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398.
doi: 10.13344/j.microbiol.china.210398 |
ZHOU Y N, HAN X B, WEI K K, GOU J Y, WANG X B, ZHANG C S, ZHENG Y F. The culturable microbial diversity in tobacco rhizosphere and their plant growth-promoting and biocontrol properties. Microbiology China, 2021, 48(12): 4649-4663. doi: 10.13344/j.microbiol.china.210398. (in Chinese)
doi: 10.13344/j.microbiol.china.210398 |
|
[10] |
许世洋, 范雨轩, 汪学苗, 张怡忻, 柴继宽, 李建军, 李敏权, 漆永红, 李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应. 微生物学报, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693.
doi: 10.13343/j.cnki.wsxb.20210693 |
XU S Y, FAN Y X, WANG X M, ZHANG Y X, CHAI J K, LI J J, LI M Q, QI Y H, LI X P. The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum. Acta Microbiologica Sinica, 2022, 62(7): 2735-2750. doi: 10.13343/j.cnki.wsxb.20210693. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20210693 |
|
[11] |
刘灵芝, 秦嗣军, 吕德国, 王冰营. 樱桃园土壤优势放线菌的分离及其促长功能研究. 中国农业科学, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016.
doi: 10.3864/j.issn.0578-1752.2013.06.016 |
LIU L Z, QIN S J, LÜ D G, WANG B Y. Isolation of dominant actinomycetes from cherry orchard soil and their functions in bio-control and plant promotion. Scientia Agricultura Sinica, 2013, 46(6): 1221-1229. doi: 10.3864/j.issn.0578-1752.2013.06.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.06.016 |
|
[12] |
WANG H, LIU R, YOU M P, BARBETTI M J, CHEN Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 2021, 9(9): 1988. doi: 10.3390/microorganisms9091988.
doi: 10.3390/microorganisms9091988 |
[13] |
BOWYA T, BALACHANDAR D. Harnessing PGPR inoculation through exogenous foliar application of salicylic acid and microbial extracts for improving rice growth. Journal of Basic Microbiology, 2020, 60(11/12): 950-961. doi: 10.1002/jobm.202000405.
doi: 10.1002/jobm.202000405 |
[14] |
PEREIRA S I A, ABRUE D, MOREIRA H, VEGA A, CASTRO P M L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 2020, 6(10): e05106. doi: 10.1016/j.heliyon.2020.e05106.
doi: 10.1016/j.heliyon.2020.e05106 |
[15] |
王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究. 作物学报, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108.
doi: 10.3724/SP.J.1006.2022.14108 |
WANG X D, YANG S Y Y, GAO R J, YU J J, ZHENG D P, NI F, JIANG D H. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect. Acta Agronomica Sinica, 2022, 48(6): 1546-1557. doi: 10.3724/sp.j.1006.2022.14108. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14108 |
|
[16] |
宁楚涵, 李文彬, 张晨, 刘润进. 定殖植物根内和根围放线菌的分离鉴定及其体外抑菌促生效应. 微生物学报, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558.
doi: 10.13343/j.cnki.wsxb.20180558 |
NING C H, LI W B, ZHANG C, LIU R J. Isolation and identification of antagonizing and growth-promoting actinobacteria colonized in plant roots and rhizosphere. Acta Microbiologica Sinica, 2019, 59(10): 2024-2037. doi: 10.13343/j.cnki.wsxb.20180558. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20180558 |
|
[17] |
刘泽平, 王志刚, 徐伟慧, 陈文晶, 吕智航, 王春龙, 史一然. 水稻根际促生菌的筛选鉴定及促生能力分析. 农业资源与环境学报, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251.
doi: 10.13254/j.jare.2017.0251 |
LIU Z P, WANG Z G, XU W H, CHEN W J, LÜ Z H, WANG C L, SHI Y R. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria. Journal of Agricultural Resources and Environment, 2018, 35(2): 119-125. doi: 10.13254/j.jare.2017.0251. (in Chinese)
doi: 10.13254/j.jare.2017.0251 |
|
[18] |
PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1): 10-15. doi: 10.1034/j.1399-3054.2003.00086.x.
doi: 10.1034/j.1399-3054.2003.00086.x |
[19] |
漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究. 草业学报, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321.
doi: 10.11686/cyxb2020321 |
MAN J, TANG B, DENG B, LI J H, HE Y J, ZHANG J L. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis. Acta Prataculturae Sinica, 2021, 30(1): 59-71. doi: 10.11686/cyxb2020321. (in Chinese)
doi: 10.11686/cyxb2020321 |
|
[20] |
SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47-56. doi: 10.1016/0003-2697(87)90612-9.
doi: 10.1016/0003-2697(87)90612-9 |
[21] | 阮继生, 黄英. 放线菌快速鉴定与系统分类. 北京: 科学出版社, 2011: 52-98. |
RUAN J S, HUANG Y. Rapid Identification and Systematics of Actinobacteria. Beijing: Science Press, 2011: 52-98. (in Chinese) | |
[22] |
HOZZEIN W N, ABUELSOUD W, WADAAN M A M, SHUIKAN A M, SELIM S, AL JAOUNI S, ABDELGAWAD H. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. The Science of the Total Environment, 2019, 651(2): 2787-2798. doi: 10.1016/j.scitotenv.2018.10.048.
doi: 10.1016/j.scitotenv.2018.10.048 |
[23] |
VAN DER MEIJ A, WORSLEY S F, HUTCHINGS M I, VAN WEZEL G P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 2017, 41(3): 392-416. doi: 10.1093/femsre/fux005.
doi: 10.1093/femsre/fux005 pmid: 28521336 |
[24] |
OLANREWAJU O S, BABALOLA O O. Streptomyces: Implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology, 2019, 103(3): 1179-1188. doi: 10.1007/s00253-018-09577-y.
doi: 10.1007/s00253-018-09577-y pmid: 30594952 |
[25] |
王岳, 丁国栋, 刘梦婕, 高广磊, 于明含, 李旭. 榆林沙区典型林地不同植被类型对土壤微生物群落结构的影响. 土壤通报, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502.
doi: 10.19336/j.cnki.trtb.2021120502 |
WANG Y, DING G D, LIU M J, GAO G L, YU M H, LI X. Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area. Chinese Journal of Soil Science, 2022, 53(4): 907-918. doi: 10.19336/j.cnki.trtb.2021120502. (in Chinese)
doi: 10.19336/j.cnki.trtb.2021120502 |
|
[26] |
刘敏, 车文学, 边伟杰, 甘禧霖, 赵怀宝. 八门湾红树林土壤放线菌多样性及抗病原菌活性分析. 海洋与湖沼, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176.
doi: 10.11693/hyhz.20210800176 |
LIU M, CHE W X, BIAN W J, GAN X L, ZHAO H B. Diversity and antimicrobial activity of actinobacteria in the soil of the Bamenwan mangrove in Hainan, China. Oceanologia et Limnologia Sinica, 2022, 53(2): 352-363. doi: 10.11693/hyhz.20210800176. (in Chinese)
doi: 10.11693/hyhz.20210800176 |
|
[27] |
项鹏, 郝建国, 张武, 李宝华, 鹿文成, 李红鹏, 张崎峰, 陈井生, 刘大伟. 大豆胞囊线虫生防放线菌的田间防效评估及其鉴定. 中国油料作物学报, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014.
doi: 10.7505/j.issn.1007-9084.2017.02.014 |
XIANG P, HAO J G, ZHANG W, LI B H, LU W C, LI H P, ZHANG Q F, CHEN J S, LIU D W. Identification and field control efficacy of biocontrol actinomycetes against Heterodera glycines. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 234-238. doi: 10.7505/j.issn.1007-9084.2017.02.014. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2017.02.014 |
|
[28] |
HASSAN S E, FOUDA A, RADWAN A A, SALEM S S, BARGHOTH M G, AWAD M A, ABDO A M, EL-GAMAL M S. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Journal of Biological Inorganic Chemistry, 2019, 24(3): 377-393. doi: 10.1007/s00775-019-01654-5.
doi: 10.1007/s00775-019-01654-5 |
[29] |
FOUDA A, HASSAN S E, ABDO A M, EL-GAMAL M S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp.. Biological Trace Element Research, 2020, 195(2): 707-724. doi: 10.1007/s12011-019-01883-4.
doi: 10.1007/s12011-019-01883-4 |
[30] |
KEIKHA N, AYATOLLAHI MOUSAVI S A, NAKHAEI A R, YADEGARI M H, SHAHIDI BONJAR G H, AMIRI S. In vitro evaluation of enzymatic and antifungal activities of soil-actinomycetes isolates and their molecular identification by PCR. Jundishapur Journal of Microbiology, 2015, 8(5): e14874. doi: 10.5812/jjm.8(5)2015.14874.
doi: 10.5812/jjm.8(5)2015.14874 |
[1] | 任海英,周慧敏,戚行江,郑锡良,俞浙萍,张淑文,王震铄. 多效唑对杨梅土壤微生物及内生群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3752-3765. |
[2] | 宫安东, 朱梓钰, 路亚南, 万海燕, 吴楠楠, CheeloDimuna, 龚双军, 文淑婷, 侯晓. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与 促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9): 1574-1586. |
[3] | 张炳火,李汉全,罗娟艳,杨建远,石红璆,孙凤珍. 放线菌JXJ-0136对白菜和豇豆生长的影响及其解磷作用[J]. 中国农业科学, 2016, 49(16): 3152-3161. |
[4] | 魏少鹏,国政,姬志勤. 小檗内生放线菌H21的鉴定及抑菌活性成分分析[J]. 中国农业科学, 2015, 48(6): 1095-1102. |
[5] | 刘灵芝, 秦嗣军, 吕德国, 王冰营. 樱桃园土壤优势放线菌的分离及其促长功能研究[J]. 中国农业科学, 2013, 46(6): 1221-1229. |
[6] | 陈倩, 高淼, 胡海燕, 徐晶, 周义清, 孙建光. 一株拮抗病原真菌的固氮菌Paenibacillus spGD812[J]. 中国农业科学, 2011, 44(16): 3343-3350. |
[7] | 王 靖, 黄 云, 姚 佳, 林 姗, 李小兰, 秦 芸. 两株根肿病生防放线菌的鉴定及其防病效果[J]. 中国农业科学, 2011, 44(13): 2692-2700 . |
[8] | 孙建光,张燕春,徐 晶,胡海燕 . 高效固氮芽孢杆菌筛选及其生物学特性[J]. 中国农业科学, 2009, 42(6): 2043-2051 . |
[9] | . 放线菌CCTCC M207210所产青霉抑制物的稳定性及应用[J]. 中国农业科学, 2009, 42(2): 636-641 . |
[10] | 茅林春,方雪花,庞华卿. 1-MCP对杨梅果实采后生理和品质的影响[J]. 中国农业科学, 2004, 37(10): 1532-1536 . |
|