中国农业科学 ›› 2021, Vol. 54 ›› Issue (14): 3097-3112.doi: 10.3864/j.issn.0578-1752.2021.14.015
黄金凤1(),吕天星1,王寻2,王颖达1,王冬梅1,闫忠业1,刘志1()
收稿日期:
2020-08-30
接受日期:
2020-12-29
出版日期:
2021-07-16
发布日期:
2021-07-26
通讯作者:
刘志
作者简介:
黄金凤,E-mail: 基金资助:
HUANG JinFeng1(),LÜ TianXing1,WANG Xu2,WANG YingDa1,WANG DongMei1,YAN ZhongYe1,LIU Zhi1()
Received:
2020-08-30
Accepted:
2020-12-29
Online:
2021-07-16
Published:
2021-07-26
Contact:
Zhi LIU
摘要:
【目的】从苹果全基因组中鉴定LRR-RLK家族蛋白成员,并进行生物信息学和表达模式分析,为研究苹果LRR-RLK的潜在功能提供理论基础。【方法】利用BLASTp基于GDR数据库鉴定苹果LRR-RLK家族成员,通过ExPASy Proteomics Server、Cell-PLoc、CD-Search Tool、MEGAX、MG2C等软件分析LRR-RLK蛋白序列基本信息、亚细胞定位情况、结构域组成、系统进化关系以及染色体定位情况。利用实时荧光定量PCR技术检测苹果12个LRR-RLK的组织表达和诱导表达特性。【结果】苹果LRR-RLK基因家族包含378个成员,这些LRR-RLK蛋白包括318—1 827个不等的氨基酸残基,等电点分布在5.16—9.75。亚细胞定位结果显示LRR-RLK蛋白均定位在细胞膜。系统进化分析可将其分为15类,各亚家族基因数量分布在1—111。染色体定位结果显示,LRR-RLK在苹果17条染色体上均有分布,其中第7条染色体数量最多,为40个。LRR-RLK家族基因具有2个特定的保守结构域,分别是LRR结构和蛋白激酶结构。蛋白二级结构以无规则卷曲为主,其次是α-螺旋,β-转角所占比例最小。通过定量检测发现筛选的12个家族成员在各组织中均有表达(除MD00G1105400外),且多数基因在茎中表达水平相对较高。低温条件下,7个基因上调表达,其中MD09G1153800上调最明显,最高为对照的6.8倍,而MD06G1170200和MD05G1061600均下调表达;在干旱条件下,8个基因上调表达,其中MD00G1105400上调最明显,最高为对照的9.6倍;在盐胁迫条件下,MD04G1150400、MD13G1108000和MD02G1071800始终处于上调表达状态,其中MD02G1071800上调最明显,最高为对照的14.9倍。苹果新梢接种轮纹病菌后,12个LRR-RLK家族基因表达基本上呈先上升后下降的趋势。并且在‘望山红’中,1 d时表达水平较高,而在‘鸡冠’中,3 d时表达水平较高。MD09G1153800和 MD05G1065800在‘鸡冠’响应轮纹病菌侵染过程中显著上调表达,而在‘望山红’中无响应,可作为进一步开展抗病研究和功能分析的候选基因。【结论】苹果LRR-RLK基因家族包含378个成员,进化上可分为15组,在17条染色体上均有分布,多数基因具有在茎中高表达的组织表达特征,多数基因受逆境和轮纹病菌调控。
黄金凤,吕天星,王寻,王颖达,王冬梅,闫忠业,刘志. 苹果LRR-RLK基因家族鉴定和表达分析[J]. 中国农业科学, 2021, 54(14): 3097-3112.
HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple[J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
表1
实时荧光定量引物序列"
登录号 Gene number | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (5′-3′) |
---|---|---|
MdActin | TGACCGAATGAGCAAGGAAATTACT | TACTCAGCTTTGGCAATCCACATC |
MD09G1153800 | TCTTCTTGAGCCATCTCC | CGTCGGTCAGTATGTTTT |
MD04G1150400 | ACCGTTCATTGCTCCTTG | GCGAGCCCTATTTCCATC |
MD03G1138500 | GAAGCCAACAGACGAGAT | GGATAATAAGCAAACCCT |
MD06G1170200 | CCAGTGGACCCATCATTC | GCTTGGAGCATTTCTTGTAT |
MD03G1036900 | GGAAAGGAGGAGCAGATT | CAGGACCCAACAGAACAT |
MD05G1061600 | AGATGTCTACAGCTATGGGATA | TGGTTAGTTCGCCTTTGA |
MD13G1108000 | TTCCCATAGACAGCAAGA | GTGGCATCCAAGTAAAGC |
MD05G1261100 | GTCGAAACCAAGCTATTT | TAGTTGAGGCGAACATTA |
MD00G1105400 | GACTGATAGGTTGGCACTG | GACCCTCTGACTATGTCG |
MD02G1071800 | GAATCCATCATAGAAACT | ATTAGCCATGTACTCGTA |
MD05G1065800 | TTCAATACCTCCGCAACT | AAATCCCACTCAGCAAAT |
MD15G1288500 | GCCTTGAGGATGGCAGAT | GTACCCTAACTTGAACAACGAC |
表2
苹果LRR-RLK家族成员信息"
亚家族 Subclade | 基因数量 No.of genes | 氨基酸数目 Number of amino acids | 范围Range | ||
---|---|---|---|---|---|
等电点 Isoelectric point | 分子量 Molecular weight (Kd) | LRR数量 No. of LRRs | |||
I-1 | 10 | 697-1022 | 5.34-8.39 | 78.68-111.91 | 1-11 |
II | 39 | 595-1054 | 5.16-8.49 | 66.69-116.19 | 1-6 |
III | 50 | 400-1063 | 5.61-9.66 | 43.51-115.39 | 2-9 |
IV | 5 | 681-683 | 6.16-7.76 | 73.96-74.16 | 3-5 |
V | 12 | 551-801 | 5.57-9.39 | 60.88-86.53 | 2-6 |
VI-1 | 10 | 700-794 | 7.61-9.46 | 77.79-87.25 | 2-8 |
VI-2 | 5 | 655-716 | 5.50-5.92 | 71.84-78.63 | 1-3 |
VII-1 | 7 | 886-1010 | 5.28-6.26 | 96.77-110.12 | 5-12 |
VII-2 | 2 | 861-862 | 5.8-6.15 | 94.58-94.84 | 7 |
VII-3 | 3 | 1141-1146 | 5.61-7.56 | 106.07-123.50 | 11-16 |
VIII | 9 | 794-964 | 5.84-7.24 | 87.52-105.10 | 3-7 |
IX | 8 | 851-977 | 5.62-8.63 | 93.01-103.52 | 5-9 |
Xa | 4 | 601-627 | 6.14-8.09 | 66.09-124.65 | 1-4 |
Xb-1 | 12 | 1021-1301 | 5.42-6.74 | 122.83-141.35 | 9-19 |
Xb-2 | 2 | 1071-1090 | 5.76-6.80 | 117.55-119.70 | 6 |
XI | 74 | 614-1258 | 5.28-9.09 | 67.92-138.67 | 4-20 |
XII | 111 | 318-1827 | 5.22-9.75 | 34.95-199.33 | 2-19 |
XIII-a | 5 | 532-606 | 5.44-6.15 | 58.27-67.22 | 2-3 |
XIII-b | 1 | 989 | 6.05 | 108.91 | 8 |
XIV | 4 | 899-911 | 6.50-8.10 | 97.60-98.43 | 5-9 |
XV | 5 | 441-1145 | 6.15-8.37 | 47.94-125.05 | 6-10 |
表3
苹果LRR-RLK蛋白的二级结构"
登录号 Gene number | α-螺旋 α-helix (%) | β-转角 β-turn (%) | 无规则卷曲 Random coil (%) | 延长链 Extended strand (%) |
---|---|---|---|---|
MD04G1019100 | 34.88 | 5.98 | 43.74 | 15.39 |
MD04G1079600 | 36.80 | 4.25 | 44.13 | 14.81 |
MD04G1150400 | 36.25 | 4.86 | 43.83 | 15.06 |
MD04G1174900 | 37.82 | 2.18 | 45.39 | 14.61 |
MD05G1065800 | 37.14 | 3.85 | 46.92 | 12.09 |
MD05G1153300 | 32.27 | 3.67 | 45.21 | 18.85 |
MD05G1261100 | 33.66 | 2.41 | 52.14 | 11.79 |
MD05G1299200 | 41.63 | 5.44 | 41.63 | 11.30 |
MD06G1198600 | 34.16 | 2.39 | 49.86 | 13.59 |
MD07G1259500 | 39.01 | 3.34 | 45.90 | 11.75 |
MD08G1017800 | 36.67 | 2.28 | 47.46 | 13.60 |
MD09G1014600 | 33.97 | 3.30 | 46.26 | 16.48 |
MD09G1153800 | 40.07 | 5.08 | 39.35 | 15.50 |
MD09G1168400 | 38.16 | 7.75 | 38.59 | 15.49 |
MD11G1047400 | 37.23 | 1.91 | 48.42 | 12.44 |
MD12G1192800 | 28.75 | 4.62 | 52.26 | 14.38 |
MD13G1108000 | 26.88 | 4.21 | 49.43 | 19.48 |
MD15G1152400 | 33.84 | 2.79 | 51.05 | 12.33 |
MD15G1288500 | 29.64 | 5.73 | 50.00 | 14.63 |
MD16G1288500 | 39.36 | 4.33 | 42.37 | 13.94 |
MD17G1060000 | 33.74 | 1.80 | 51.47 | 12.99 |
[1] | SHIU S H, BLEECKER A B. Receptor-like kinases from Arabidopsisform a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19):10763-10768. |
[2] |
XIANG Y, CAO Y L, XU C G, LI X H, WANG S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theoretical and Applied Genetics, 2006, 113(7):1347-1355.
doi: 10.1007/s00122-006-0388-x |
[3] |
DE LORENZO L, MERCHAN F, LAPORTE P, THOMPSON R, CLARKE J, SOUSA C, CRESPI M. A novel plant leucine-rich repeat receptor kinase regulates the response ofMedicago truncatula roots to salt stress. Plant Cell, 2009, 21(2):668-680.
doi: 10.1105/tpc.108.059576 |
[4] |
LI X X, SALMAN A, GUO C, YU J, CAO S X, GAO X M, LI W, LI H, GUO Y F. Identification and characterization of LRR-RLKfamily genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 2018, 7:120.
doi: 10.3390/cells7090120 |
[5] |
TICHTINSKY G, VANNOOSTHUYSE V, COCK J M, GAUDE T. Making inroads into plant receptor kinase signalling pathways. Trends in Plant Science, 2003, 8(5):231-237.
doi: 10.1016/S1360-1385(03)00062-1 |
[6] |
NAPIER R. Plant hormone binding sites. Annals of Botany, 2004, 93:227-233.
doi: 10.1093/aob/mch041 |
[7] |
LEHTI-SHIU M D, SHIU S H. Diversity, classification and function of the plant protein kinase superfamily. Philosophical Transactions of The Royal Society Biological Sciences, 2012, 367:2619-2639.
doi: 10.1098/rstb.2012.0003 |
[8] |
GISH L A, CLARK S E. The RLK/Pelle family of kinases. The Plant Journal, 2011, 66:117-127.
doi: 10.1111/tpj.2011.66.issue-1 |
[9] |
SUN J M, LI L T, WANG P, ZHANG S L, WU J Y. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18:763.
doi: 10.1186/s12864-017-4155-y |
[10] |
GOMEZ-GOMEZ L, BAUER Z, BOLLER T. Both the extracellular leucine-richrepeat domain and the kinase activity of FLS2are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001, 13(5):1155-1163.
doi: 10.1105/tpc.13.5.1155 |
[11] |
KUNZE G, ZIPFEL C, ROBATZEK S, NIEHAUS K, BOLLER T, FELIX G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004, 16:3496-3507.
doi: 10.1105/tpc.104.026765 |
[12] |
SONG W Y, WANG G L, CHEN L L, KIM H S, PI LY, HOLSTEN T, GARDNER J, WANG B, ZHAI W X, ZHU L H, FAUQUET C, RONALD P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243):1804-1806.
doi: 10.1126/science.270.5243.1804 |
[13] |
HU H, WANG J, SHI C, YUAN C, PENG C F, YIN J J, LI W T, HE M, WANG J C, MA B T, WANG Y P, LI S G, CHEN X W. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzaepv.oryzae is essential for Xa21-mediated disease resistance. Rice, 2015, 8: 1. https://doi.org/10.1186/s12284-014-0034-1.
doi: 10.1186/s12284-014-0034-1 |
[14] |
CHEN T T, XIAO J, XU J, WAN WT, QIN B, CAO A Z, CHEN W, XING L P, DU C, GAO X Q, ZHANG S Z, ZHANG R Q, SHEN W B, WANG H Y, WANG X E. Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC Plant Biology, 2016, 16:27.
doi: 10.1186/s12870-016-0713-8 |
[15] |
BLAUM B S, MAZZOTTA S, NOLDEKE E R, HALTER T, MADLUNG J, KEMMERLING B, STEHLE T. Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling inArabidopsis. Journal of Structural Biology, 2014, 186(1):112-121.
doi: 10.1016/j.jsb.2014.02.005 |
[16] |
IMKAMPE J, HALTER T, HUANG S H, SCHULZE S, MAZZOTTA S, SCHMIDT N, MANSTRETTA R, POSTEL S, WIERZBA M, YANG Y, VAN DONGEN W M A M, STAHL M, ZIPFEL C, GOSHE M B, CLOUSE S, DE VRIES S C, TAX F, WANG X F, KEMMERLING B. The Arabidopsis leucine-rich repeat receptor kinase BIR3negatively regulates BAK1 Receptor complex formation and stabilizes BAK1. Plant Cell, 2017, 29(9):2285-2303.
doi: 10.1105/tpc.17.00376 |
[17] |
SUN R B, WANG S H, MA D, LIU C L. Genome-wide analysis of LRR-RLK gene family in four Gossypium species and expression analysis during cotton development and stress responses. Genes, 2018, 9:592.
doi: 10.3390/genes9120592 |
[18] |
LI H, HAN X D, LIU X X, ZHOU M Y, REN W, ZHAO B B, JU C L, LIU Y, ZHAO J R. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics, 2019, 20:737.
doi: 10.1186/s12864-019-6143-x |
[19] |
LIN F M, LI S, WANG K, TIAN H, GAO J F, ZHAO Q Z, DU C Q. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Science, 2020, 296:110465.
doi: 10.1016/j.plantsci.2020.110465 |
[20] |
LI R, AN J P, YOU C X, WANG X F, HAO Y J. Molecular cloning and functional characterization of the CEP RECEPTOR1 gene MdCEPR1 of apple (Malus × domestica). Plant Cell, Tissue and Organ Culture, 2020, 140(3):539-550.
doi: 10.1007/s11240-019-01745-w |
[21] | LIAO Y L, HU C Q, ZHANG X W, CAO X F, XU Z J, GAO X L, LI L H, ZHU J Q, CHEN R J. Isolation of a novel leucine-rich repeat receptorlike kinase (OsLRR2) gene from rice and analysis of its relation to abiotic stress responses. Biotechnology & Biotechnological Equipment, 2017, 31(1):51-57. |
[22] |
WANG J H, KUCUKOGLU M, ZHANG L B, CHEN P, DANIEL D, NILSSON O, JONES B, SANDBERG G, ZHENG B. The ArabidopsisLRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biology, 2013, 13:94.
doi: 10.1186/1471-2229-13-94 |
[23] | 杨敏, 韩玉珍, 阿依江, 哈拜克, 王翠玲. LRR-RLKs亚家族基因RLK6在拟南芥开花过程中的作用. 核农学报, 2017, 31(4):654-662. |
YANG M, HAN Y Z, A Y J, HA B K, WANG C L. Study of RLK6, one member of leucine-rich repeat receptor-like kinases(LRR-RLKs) subfamily gene, on process of flowering in Arabidopsis . Journal of Nuclear Agricultural Sciences, 2017, 31(4):654-662. (in Chinese) | |
[24] |
YU Y X, SONG J L, TIAN X H, ZHANG H W, LI L G, ZHU H F. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when over expressed. Science China-Life Sciences, 2018, 61:100-112.
doi: 10.1007/s11427-016-9107-3 |
[25] |
DIMITROVA I, TAX F E. Lateral root growth in Arabidopsisis controlled by short and long distance signaling through the LRR RLKs XIP1/CEPR1 and CEPR2. Plant Signaling and Behavior, 2018, 13(6):e1489667.
doi: 10.1080/15592324.2018.1489667 |
[26] |
ZOU Y, LIU X Y, WANG Q, CHEN Y, LIU C, QIU Y, ZHANG W. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014, 1840(6):1676-1685.
doi: 10.1016/j.bbagen.2014.01.003 |
[27] |
VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, RI A D, GOREMYKIN V, et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010, 42(10):833-839.
doi: 10.1038/ng.654 |
[28] |
DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, VAN DE GEEST H, BIANCO L, MICHELETTI D, WELASCO R, DI PIERRO E A, GOUZY J, REES D J G, GUERIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, VAN DE WEG E, TROGGIO M, BUCHER E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49:1099-1106.
doi: 10.1038/ng.3886 |
[29] | 袁高鹏, 韩晓蕾, 卞书迅, 张利义, 田义, 张彩霞, 丛佩华. 苹果LIM基因家族生物信息学及表达分析. 中国农业科学, 2019, 52(23):4322-4332. |
YUAN G P, HAN X L, BIAN S X, ZHANG L Y, TIAN Y, ZHANG C X, CONG P H. Bioinformatics and expression analysis of theLIMgene family in apple . Scientia Agricultura Sinica, 2019, 52(23):4322-4332. (in Chinese) | |
[30] |
WAI C M, POWELL B, MING R, MIN X J. Genome-wide identification and analysis of genes encoding proteolytic enzymes in pineapple. Tropical Plant Biology, 2016, 9:161-175.
doi: 10.1007/s12042-016-9172-5 |
[31] | 张娅, 黄天虹, 张西林, 刘同坤, 侯喜林, 李英. 不结球白菜BcSERK1基因的克隆及表达分析. 南京农业大学学报, 2019, 42(6) : 1014-1021. |
ZHANG Y, HUANG T H, ZHANG X L, LIU T K, HOU X L, LI Y. Cloning and expression analysis of BcSERK1 from non-heading Chinese cabbage . Journal of Nanjing Agricultural University, 2019, 42(6):1014-1021. (in Chinese) | |
[32] |
ZHOU F l, GUO Y, QIU L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biology, 2016, 16:58.
doi: 10.1186/s12870-016-0744-1 |
[33] |
YUAN N, RAI K M, BALASUBRAMANIAN V K, UPADHYAY S K, LUO H, MENDU V. Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIFsubfamily in cotton (Gossypium hirsutum). BMC Plant Biology, 2018, 18:185.
doi: 10.1186/s12870-018-1395-1 |
[34] |
ARGOUT X, SALSE J, AURY J M, GUILTINAN M J, DROC G, GOUZY J, ALLEGRE M, CHAPARRO C, LEGAVRE T, MAXIMOVA S N, ABROUK M, MURAT F, FOUET O, POULAIN J, RUIZ M, ROGUET Y, RODIER-GOUD M, BARBOSA-NETO J F, SABOT F, KUDRNA D, AMMIRAJU J S S, SCHUSTER S C, CARLSON J E, SALLET E, SCHIEX T, DIEVART A, KRAMER M, GELLEY L, SHI Z, BERARD A, et al. The genome of Theobroma cacao. Nature Genetics, 2011, 43:101-108.
doi: 10.1038/ng.736 |
[35] |
MAGALHAES D M, SCHOLTE L L S, SILVA N V, OLIVEIRA G C, ZIPFEL C, TAKITA M A, DE SOUZA A A. LRR-RLK family from two Citrus species: Genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17:623.
doi: 10.1186/s12864-016-2930-9 |
[36] |
WEI Z R, WANG J H, YANG S H, SONG Y J. Identification and expression analysis of the LRR-RLK gene family in tomato (Solanum lycopersicum) Heinz 1706. Genome, 2015, 58(4):121-134.
doi: 10.1139/gen-2015-0035 |
[37] |
LIU P L, DU L, HUANG Y, GAO S M, YU M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, 2017, 17:47.
doi: 10.1186/s12862-017-0891-5 |
[38] |
BETTEMBOURG M, DAL-SOGLIO M, BUREAU C, VERNET A, DARDOUX A, PORTEFAIX M, BES M, MEYNARD D, MIEULET D, CAYROL B, PERIN C, COURTOIS B, MA J F, DIEVART A. Root cone angle is enlarged in docs1 LRR-RLK mutants in rice. Rice, 2017, 10:50.
doi: 10.1186/s12284-017-0190-1 |
[39] |
HOU B Z, CHENG X, SHEN Y Y. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany, 2018, 69(7):1569-1582.
doi: 10.1093/jxb/erx488 |
[40] |
PARK S J, MOON J C, PARK Y C, KIM J, KIM D S, JANG C S. Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. Journal of Plant Physiology, 2014, 171(17):1645-1653.
doi: 10.1016/j.jplph.2014.08.002 |
[41] |
XIE R J, LI Y J, HE S L, ZHENG Y Q, YI S L, LV Q, DENG L. Genome-wide analysis of citrusR2R3MYBgenes and their spatiotemporal expression under stresses and hormone treatments. PLoS ONE, 2014, 9(12):e113971.
doi: 10.1371/journal.pone.0113971 |
[42] | 刘河, 朵虎, 赵丹, 孙娥, 马富鹏, 马春玲, 左存武. 梨CRK家族基因及其腐烂病菌侵染响应成员的鉴定. 园艺学报, 2020, 47(4):963-973. |
LIU H, DUO H, ZHAO D, SUN E, MA F P, MA C L, ZUO C W. Identification ofCRKgene family in pear and its members in response to signals of Valsa pyri . Acta Horticulturae Sinica, 2020, 47(4):963-973. (in Chinese) | |
[43] |
LIN H, LENG H, GUO Y S, KONDO S, ZHAO Y H, SHI G L, GUO X W. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Scientia Horticulturae, 2019, 244:200-207.
doi: 10.1016/j.scienta.2018.09.045 |
[44] | FAIZE M, FAIZE M, FAIZE L, ISHII H. Characterization of a leucine-rich repeat receptor-like protein kinase (LRPK) gene from Japanese pear and its possible involvement in scab resistance. Journal of General Plant Pahtology, 2007, 73(2):104-112. |
[45] |
KOMJANC M, FESTI S, RIZZOTTI L, CATTIVELLI L, CERVONE F, DE LORENZO G. A leucine-rich repeat receptor-like protein kinase(LRPKm1) gene is induced in Malus × domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Molecular Biology , 1999, 40:945-957.
doi: 10.1023/A:1006275924882 |
[46] |
PADMARASU S, SARGENT D J, PATOCCHI A, TROGGOI M, BALDI P, LINSMITH G, POLES L, JANSCH M, KELLERHALS M, TATTARINI S, VELASCO R. Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12(Vb)-based apple scab resistance. Molecular Breeding, 2018, 38:73.
doi: 10.1007/s11032-018-0825-y |
[47] | COVA V, PARIS R, PASSEROTTI S, ZINI E, GESSLER C, PERTOT I, LOI N, MUSETTI R, KOMJANC M. Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genetics & Genomes, 2010, 6:389-403. |
[1] | 刘瑞, 赵羽涵, 付忠举, 顾欣怡, 王艳霞, 靳学慧, 杨莹, 吴伟怀, 张亚玲. 黑龙江省和海南省PWL基因家族在稻瘟病菌中的分布及变异[J]. 中国农业科学, 2023, 56(2): 264-274. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[4] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[5] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[6] | 李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望[J]. 中国农业科学, 2022, 55(3): 425-437. |
[7] | 路翔, 高源, 王昆, 孙思邈, 李连文, 李海飞, 李青山, 冯建荣, 王大江. 苹果栽培品种不同族系香气特征分析[J]. 中国农业科学, 2022, 55(3): 543-557. |
[8] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[9] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[10] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[11] | 高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264. |
[12] | 琚铭, 苗红梅, 黄盈盈, 马琴, 王慧丽, 王翠英, 段迎辉, 韩秀花, 张海洋. 芝麻种间杂交亲和性差异及杂种生物学特征分析[J]. 中国农业科学, 2022, 55(20): 3897-3909. |
[13] | 段灿星,曹言勇,董怀玉,夏玉生,李红,胡清玉,杨知还,王晓鸣. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定[J]. 中国农业科学, 2022, 55(2): 265-279. |
[14] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[15] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
|