中国农业科学 ›› 2022, Vol. 55 ›› Issue (21): 4252-4264.doi: 10.3864/j.issn.0578-1752.2022.21.012
高小琴1(),聂继云2(),陈秋生3,韩令喜2,刘璐3,程杨1,刘明雨2
收稿日期:
2022-02-16
接受日期:
2022-04-27
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
聂继云
作者简介:
高小琴,E-mail:基金资助:
GAO XiaoQin1(),NIE JiYun2(),CHEN QiuSheng3,HAN LingXi2,LIU Lu3,CHENG Yang1,LIU MingYu2
Received:
2022-02-16
Accepted:
2022-04-27
Online:
2022-11-01
Published:
2022-11-09
Contact:
JiYun NIE
摘要:
【目的】探讨‘富士’苹果果皮矿物元素含量的地域特征及产地溯源的可行性,结合多元统计分析,筛选出有效的判别指标,建立‘富士’苹果产地溯源模型,实现‘富士’苹果产地识别。【方法】以我国两大主产区(渤海湾产区和黄土高原产区)的124份‘富士’苹果为研究对象,采用电感耦合等离子质谱技术(ICP-MS)测定果皮中常量元素钠(Na)、镁(Mg)、钾(K)、钙(Ca),微量元素钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、钼(Mo)、镉(Cd)、锑(Sb)、钡(Ba)、铅(Pb)、铀(U),稀土元素钇(Y)、镧(La)、铯(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er),共31种矿物元素的含量,并结合独立样本T检验、主成分分析、线性判别分析、正交偏最小二乘判别分析进行‘富士’苹果的产地溯源。【结果】渤海湾产区和黄土高原产区的果皮样品中矿物元素Mg、Ca、Na、Fe、Mn、Cu、Ba、Ni、Nd、Pb、V、Ce、Pr、La、Dy、U、Ho和Co含量差异显著(P<0.05)。主成分分析结果表明,提取的12个主成分累计方差贡献率为81%,可对两大产区的样品进行初步聚类。利用线性判别分析,筛选出10种矿物元素(Mg、Ca、Cr、Mn、Fe、Ni、Gd、Tb、Dy、U)作为判别两大产区‘富士’苹果地域来源较好的指标,所建立的判别模型,对原始整体判别率为92%,交叉验证判别率为89.5%。通过正交偏最小二乘判别分析,确定Co、Ba、Ho、Dy、Pr这5种矿物元素在样品分类中起关键作用,模型的产地鉴别准确率可达98%,实现了两个产区‘富士’苹果的产地溯源。【结论】‘富士’苹果果皮可作为一种有效的溯源部位。稀土元素Dy、Ho、Pr、Gd、Tb的含量可作为‘富士’苹果产地溯源的重要指标。本研究结果可为‘富士’苹果产地溯源提供理论依据和技术支撑。
高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264.
GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology[J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
表1
‘富士’苹果样品采样信息一览表"
序号 Serial number | 产地 Place of origin | 序号 Serial number | 产地 Place of origin | 序号 Serial number | 产地 Place of origin | 序号 Serial number | 产地 Place of origin | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 烟台 Yantai | 2 | 烟台 Yantai | 3 | 威海 Weihai | 4 | 威海 Weihai | |||
5 | 威海 Weihai | 6 | 威海 Weihai | 7 | 威海 Weihai | 8 | 威海 Weihai | |||
9 | 威海 Weihai | 10 | 威海 Weihai | 11 | 威海 Weihai | 12 | 威海 Weihai | |||
13 | 泰安 Tai’an | 14 | 泰安 Tai’an | 15 | 泰安 Tai’an | 16 | 泰安 Tai’an | |||
17 | 泰安 Tai’an | 18 | 泰安 Tai’an | 19 | 泰安 Tai’an | 20 | 泰安 Tai’an | |||
21 | 泰安 Tai’an | 22 | 泰安 Tai’an | 23 | 青岛 Qingdao | 24 | 青岛 Qingdao | |||
25 | 青岛 Qingdao | 26 | 保定 Baoding | 27 | 保定 Baoding | 28 | 保定 Baoding | |||
29 | 保定 Baoding | 30 | 保定 Baoding | 31 | 保定 Baoding | 32 | 保定 Baoding | |||
33 | 保定 Baoding | 34 | 保定 Baoding | 35 | 衡水 Hengshui | 36 | 衡水 Hengshui | |||
37 | 石家庄 Shijiazhuang | 38 | 石家庄 Shijiazhuang | 39 | 石家庄 Shijiazhuang | 40 | 石家庄 Shijiazhuang | |||
41 | 石家庄 Shijiazhuang | 42 | 石家庄 Shijiazhuang | 43 | 石家庄 Shijiazhuang | 44 | 石家庄 Shijiazhuang | |||
45 | 石家庄 Shijiazhuang | 46 | 营口 Yingkou | 47 | 营口 Yingkou | 48 | 营口 Yingkou | |||
49 | 营口 Yingkou | 50 | 营口 Yingkou | 51 | 营口 Yingkou | 52 | 营口 Yingkou | |||
53 | 营口 Yingkou | 54 | 营口 Yingkou | 55 | 营口 Yingkou | 56 | 渭南 Weinan | |||
57 | 渭南 Weinan | 58 | 渭南 Weinan | 59 | 渭南 Weinan | 60 | 渭南 Weinan | |||
61 | 渭南 Weinan | 62 | 渭南 Weinan | 63 | 延安 Yan’an | 64 | 延安 Yan’an | |||
65 | 延安 Yan’an | 66 | 延安 Yan’an | 67 | 延安 Yan’an | 68 | 延安 Yan’an | |||
69 | 延安 Yan’an | 70 | 延安 Yan’an | 71 | 咸阳 Xianyang | 72 | 咸阳 Xianyang | |||
73 | 咸阳 Xianyang | 74 | 咸阳 Xianyang | 75 | 咸阳 Xianyang | 76 | 咸阳 Xianyang | |||
77 | 咸阳 Xianyang | 78 | 咸阳 Xianyang | 79 | 咸阳 Xianyang | 80 | 平凉 Pingliang | |||
81 | 平凉 Pingliang | 82 | 平凉 Pingliang | 83 | 平凉 Pingliang | 84 | 平凉 Pingliang | |||
85 | 平凉 Pingliang | 86 | 天水 Tianshui | 87 | 天水 Tianshui | 88 | 天水 Tianshui | |||
89 | 天水 Tianshui | 90 | 天水 Tianshui | 91 | 天水 Tianshui | 92 | 天水 Tianshui | |||
93 | 天水 Tianshui | 94 | 天水 Tianshui | 95 | 天水 Tianshui | 96 | 运城 Yuncheng | |||
97 | 运城 Yuncheng | 98 | 运城 Yuncheng | 99 | 运城 Yuncheng | 100 | 运城 Yuncheng | |||
101 | 运城 Yuncheng | 102 | 运城 Yuncheng | 103 | 运城 Yuncheng | 104 | 运城 Yuncheng | |||
105 | 运城 Yuncheng | 106 | 晋中 Jinzhong | 107 | 晋中 Jinzhong | 108 | 晋中 Jinzhong | |||
109 | 临汾 Linfen | 110 | 临汾 Linfen | 111 | 临汾 Linfen | 112 | 临汾 Linfen | |||
113 | 临汾 Linfen | 114 | 临汾 Linfen | 115 | 临汾 Linfen | 116 | 三门峡 Sanmenxia | |||
117 | 三门峡 Sanmenxia | 118 | 三门峡 Sanmenxia | 119 | 三门峡 Sanmenxia | 120 | 三门峡 Sanmenxia | |||
121 | 三门峡 Sanmenxia | 122 | 三门峡 Sanmenxia | 123 | 三门峡 Sanmenxia | 124 | 三门峡 Sanmenxia |
表2
不同产区‘富士’苹果果皮矿物元素含量的差异性分析"
元素 Element | 渤海湾产区 Bohai Bay production area | 黄土高原产区 The Loess Plateau production area |
---|---|---|
K | 1811±441a | 1710±302a |
Mg | 168.9±30.0a | 159.7±18.6b |
Ca | 121.2±17.9b | 155.4 ±32.1a |
Na | 10.61±6.11a | 8.41±4.18b |
Fe | 6.16±1.78a | 5.02±1.73b |
Mn | 1.60±0.63a | 1.31±0.30b |
Cu | 0.70±0.45a | 0.51±0.14b |
Zn | 0.61±0.15a | 0.67±0.42a |
Cr | 0.23±0.14a | 0.23±0.14a |
Ba | 0.19±0.09b | 0.32±0.16a |
Ni | 0.07±0.04a | 0.05±0.03b |
Mo | 0.03±0.02a | 0.03±0.01a |
Nd | 0.013±0.017a | 0.007±0.011b |
Pb | 0.013±0.006b | 0.016±0.008a |
As | 0.0088±0.0139a | 0.0063±0.0033a |
V | 0.0068±0.0054a | 0.0049±0.0024b |
Ce | 0.0062±0.0035b | 0.0118±0.0169a |
Pr | 0.0049±0.0082a | 0.0019±0.0024b |
La | 0.0040±0.0026b | 0.0093±0.0173a |
Dy | 0.0023±0.0029a | 0.0010±0.0018b |
Y | 0.0018±0.0008a | 0.0016±0.0010a |
Sb | 0.0012±0.0007a | 0.0013±0.0007a |
U | 0.0012±0.0011a | 0.0008±0.0006b |
Cd | 0.0010±0.0029a | 0.0008±0.0005a |
Ho | 0.000697±0.001250a | 0.000258±0.000503b |
Gd | 0.000589±0.000369a | 0.000675±0.000722a |
Sm | 0.000439±0.000240a | 0.000470±0.000420a |
Er | 0.000185±0.000101a | 0.000176±0.000123a |
Co | 0.000143±0.000199a | 0.000034±0.000027b |
Eu | 0.000109±0.000051a | 0.000110±0.000069a |
Tb | 0.000089±0.000077a | 0.000074±0.000060a |
表3
前12个主成分中各变量的成分矩阵及累计方差贡献率"
元素 Element | 主成分 Principal component | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Dy | 0.793 | -0.463 | 0.175 | -0.070 | 0.062 | 0.125 | 0.018 | 0.024 | -0.010 | 0.028 | 0.010 | 0.038 |
Nd | 0.786 | -0.423 | 0.100 | -0.121 | -0.021 | 0.145 | -0.088 | -0.008 | 0.021 | 0.032 | 0.023 | -0.086 |
Er | 0.754 | 0.214 | 0.012 | -0.261 | -0.070 | -0.025 | 0.097 | -0.074 | -0.043 | -0.143 | -0.198 | 0.056 |
Ho | 0.729 | -0.436 | 0.132 | -0.214 | -0.045 | 0.112 | -0.095 | -0.012 | -0.035 | -0.049 | 0.237 | 0.016 |
Pr | 0.691 | -0.440 | 0.143 | -0.231 | -0.039 | 0.136 | -0.108 | 0.007 | 0.009 | -0.043 | 0.247 | -0.034 |
Gd | 0.668 | -0.141 | -0.169 | -0.077 | -0.184 | 0.232 | 0.027 | -0.213 | -0.045 | -0.045 | -0.054 | -0.027 |
Fe | 0.646 | 0.408 | 0.221 | 0.281 | 0.009 | -0.224 | 0.030 | -0.141 | -0.068 | 0.038 | 0.002 | -0.193 |
Y | 0.611 | 0.604 | -0.008 | -0.142 | -0.126 | -0.113 | -0.008 | -0.002 | 0.076 | -0.097 | -0.225 | -0.010 |
Eu | 0.608 | 0.414 | -0.142 | 0.041 | -0.258 | -0.396 | -0.039 | -0.185 | 0.046 | -0.094 | 0.052 | 0.071 |
Tb | 0.592 | -0.313 | -0.056 | -0.095 | -0.075 | 0.032 | 0.077 | -0.111 | -0.232 | 0.298 | 0.011 | -0.019 |
V | 0.567 | 0.014 | 0.171 | 0.432 | 0.217 | -0.240 | 0.147 | 0.193 | 0.116 | -0.079 | 0.011 | 0.012 |
Mg | -0.232 | 0.640 | 0.305 | -0.235 | 0.103 | 0.194 | 0.120 | -0.160 | -0.103 | -0.119 | 0.247 | -0.021 |
Na | 0.144 | 0.586 | 0.411 | 0.052 | -0.069 | -0.027 | -0.331 | -0.018 | 0.066 | 0.193 | 0.008 | -0.036 |
K | -0.198 | 0.538 | 0.382 | 0.134 | 0.067 | 0.117 | -0.205 | -0.199 | -0.128 | -0.089 | 0.401 | -0.085 |
Mn | -0.082 | 0.525 | 0.414 | -0.188 | 0.193 | 0.335 | 0.228 | -0.165 | 0.034 | -0.206 | 0.039 | -0.076 |
Pb | 0.263 | 0.495 | -0.492 | -0.042 | 0.269 | 0.241 | -0.229 | 0.237 | -0.139 | -0.006 | -0.177 | 0.117 |
Sm | 0.416 | 0.477 | -0.200 | 0.014 | -0.146 | -0.422 | -0.142 | -0.122 | 0.270 | -0.233 | 0.013 | -0.039 |
Sb | 0.215 | 0.370 | -0.330 | 0.192 | 0.216 | 0.183 | -0.296 | 0.140 | 0.262 | 0.281 | 0.090 | -0.028 |
Ca | 0.183 | 0.310 | -0.628 | -0.433 | 0.162 | -0.088 | 0.184 | 0.022 | 0.044 | 0.161 | 0.257 | -0.031 |
Ba | 0.071 | 0.262 | -0.593 | -0.294 | 0.164 | -0.113 | 0.343 | 0.161 | -0.030 | 0.065 | 0.408 | -0.009 |
Cu | 0.134 | 0.382 | 0.448 | -0.099 | -0.408 | 0.190 | 0.089 | 0.431 | 0.091 | 0.279 | 0.016 | 0.052 |
La | 0.035 | 0.026 | -0.430 | 0.417 | -0.380 | 0.426 | 0.095 | -0.170 | 0.182 | -0.170 | 0.163 | 0.152 |
Ce | 0.124 | 0.098 | -0.438 | 0.523 | -0.280 | 0.432 | 0.090 | -0.150 | 0.141 | -0.080 | -0.020 | 0.054 |
Mo | 0.363 | 0.160 | -0.043 | 0.482 | 0.268 | -0.146 | 0.301 | 0.315 | -0.236 | 0.042 | 0.010 | 0.180 |
U | 0.087 | 0.402 | 0.271 | -0.178 | -0.531 | 0.176 | 0.308 | 0.416 | 0.077 | 0.025 | -0.035 | 0.060 |
Zn | 0.171 | 0.332 | -0.114 | -0.328 | 0.453 | 0.346 | 0.146 | -0.161 | 0.084 | 0.008 | -0.431 | -0.094 |
As | 0.333 | 0.284 | 0.002 | 0.105 | 0.192 | 0.193 | -0.550 | 0.148 | -0.380 | -0.070 | 0.067 | 0.285 |
Ni | 0.151 | -0.120 | 0.255 | 0.041 | 0.365 | 0.043 | -0.090 | -0.080 | 0.676 | 0.325 | 0.084 | 0.103 |
Cr | 0.229 | 0.231 | 0.051 | 0.433 | 0.024 | 0.072 | 0.291 | -0.290 | -0.287 | 0.486 | -0.024 | -0.269 |
Cd | 0.254 | -0.167 | 0.000 | 0.264 | 0.242 | 0.160 | 0.016 | 0.409 | 0.091 | -0.384 | 0.061 | -0.575 |
Co | 0.263 | -0.097 | 0.411 | 0.164 | 0.401 | 0.007 | 0.393 | -0.097 | 0.068 | -0.188 | 0.055 | 0.444 |
特征值Eigenvalue | 6.070 | 4.373 | 2.826 | 2.039 | 1.773 | 1.501 | 1.376 | 1.189 | 1.110 | 1.052 | 0.094 | 0.854 |
方差贡献率 Variance contribution rate (%) | 19.58 | 14.11 | 9.12 | 6.58 | 5.72 | 4.84 | 4.44 | 3.83 | 3.58 | 3.39 | 3.04 | 2.76 |
累计贡献率 Cumulative variance (%) | 19.58 | 33.69 | 42.81 | 49.39 | 55.11 | 59.95 | 64.39 | 68.22 | 71.80 | 75.19 | 78.23 | 80.99 |
[1] | 葛玉全, 李红锋, 王春燕, 魏晓霞, 苏娟, 东莎莎. 我国苹果产业现状及可持续发展建议. 现代食品, 2021(11): 4-6. |
GE Y Q, LI H F, WANG C Y, WEI X X, SU J, DONG S S. Status and sustainable development proposals of apple industry in China. Modern Food, 2021(11): 4-6. (in Chinese) | |
[2] | LIU X, ZHAO Y, MU J, ZHANG J, ZHANG A. Determination of geographical origin of concentrated apple juice through analysis of stable isotopic and mineral elemental fingerprints: Preliminary results. Journal of the Science of Food and Agriculture, 2021, 101(9): 3795-3803. doi: 10.1002/jsfa.11012. |
[3] | 李卓, 郭玉蓉, 孙立军, 刘婧琳, 李景景, 付成程. 不同产地长富2号苹果品质差异及其与地理坐标的相关性. 陕西师范大学学报(自然科学版), 2012, 40(4): 98-103. |
LI Z, GUO Y R, SUN L J, LIU J L, LI J J, FU C C. Quality differences of Nagafu 2 apple from different habitats and its correlation with geographical coordinates. Journal of Shaanxi Normal University (Natural Science Edition), 2012, 40(4): 98-103. (in Chinese) | |
[4] | 匡立学, 聂继云, 李银萍, 程杨, 沈友明. 中国不同地区‘富士’苹果品质评价. 中国农业科学, 2020, 53(11): 2253-2263. |
KUANG L X, NIE J Y, LI Y P, CHENG Y, SHEN Y M. Quality evaluation of ‘Fuji’ apples cultivated in different regions of China. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263. (in Chinese) | |
[5] | ZHANG Q, LI X L, LI M J, ZHOU B B, ZHANG J K, WEI Q P. Correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’ apples. Agricultural Basic Science and Technology, 2017, 18(2): 212-218. |
[6] | BERTOLDI D, COSSIGNANI L, BLASI F, PERINI M, BARBERO A, PIANEZZE S, MONTESANO D. Characterisation and geographical traceability of Italian goji berries. Food Chemistry, 2019, 275: 585-593. doi: 10.1016/j.foodchem.2018.09.098. |
[7] | 李富荣, 刘雯雯, 文典, 徐爱平, 李蕾, 陈永坚, 陈楚国, 王旭. 基于矿质元素指纹分析的陈皮产地溯源研究. 食品工业科技, 2022, 43(11): 295-302. |
LI F R, LIU W W, WEN D, XU A P, LI L, CHEN Y J, CHEN C G, WANG X. Study on origin tracing of dried tangerine peel using mineral element fingerprints. Science and Technology of Food Industry, 2022, 43(11): 295-302. (in Chinese) | |
[8] | 谭曌, 吴文琴, 张炜奇, 印南日, 贾明明, 陈小媚, 张兆威, 李培武. 农产品及产地环境中微量元素检测研究进展. 中国油料作物学报, 2020, 42(3): 334-340. |
TAN Z, WU W Q, ZHANG W Q, YIN N R, JIA M M, CHEN X M, ZHANG Z W, LI P W. Development of detection for trace elements in agricultural products and their field environment. Chinese Journal of Oil Crop Sciences, 2020, 42(3): 334-340. (in Chinese) | |
[9] | 郭波莉, 魏益民, 潘家荣, 李勇. 多元素分析判别牛肉产地来源研究. 中国农业科学, 2007, 40(12): 2842-2847. |
GUO B L, WEI Y M, PAN J R, LI Y. Determination of beef geographical origin based on multi-element analysis. Scientia Agricultura Sinica, 2007, 40(12): 2842-2847. (in Chinese) | |
[10] | 夏魏, 刘志, 邵圣枝, 聂晶, 李祖光, 袁玉伟, ROGERS K M. 茶叶与产地环境中稳定同位素和矿物元素特征及其相关性研究. 核农学报, 2020, 34(3): 573-581. |
XIA W, LIU Z, SHAO S Z, NIE J, LI Z G, YUAN Y W, ROGERS K M. Characteristics and correlation of stable isotopes and mineral elements in tea and producing environment. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 573-581. (in Chinese) | |
[11] | ZHANG J Y, NIE J Y, ZHANG L B, XU G F, ZHENG H D, SHEN Y Y, KUANG L X, GAO X Q, ZHANG H. Multielement authentication of apples from the cold Highlands in southwest China. Journal of the Science of Food and Agriculture, 2022, 102(1): 241-249. doi: 10.1002/jsfa.11351. |
[12] | CHEAJESADAGUL P, ARNAUDGUILHEM C, SHIOWATANA J, SIRIPINYANOND A, SZPUNAR J. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chemistry, 2013, 141(4): 3504-3509. doi: 10.1016/j.foodchem.2013.06.060. |
[13] | 李彩虹, 开建荣, 王彩艳, 王芳, 闫玥, 张静, 杨春霞, 葛谦. 基于矿物元素技术的品种、产区葡萄酒的判别分析. 食品与发酵工业, 2022, 48(12): 281-287. |
LI C H, KAI J R, WANG C Y, WANG F, YAN Y, ZHANG J, YANG C X, GE Q. Discriminant analysis of wine variety and origin based on the content of mineral elements. Food and Fermentation Industries, 2022, 48(12): 281-287. (in Chinese) | |
[14] | LI L, WEN B, ZHANG X L, ZHAO Y, DUAN Y, SONG X F, REN S, WANG Y H, FANG W P, ZHU X J. Geographical origin traceability of tea based on multi-element spatial distribution and the relationship with soil in district scale. Food Control, 2018, 90: 18-28. |
[15] | 周秀雯, 吴浩, 陈海泉, 颜治, 靳保辉, 谢丽琪, 赵燕, 赵超敏, 陈辉, 潘家荣. 基于矿物元素指纹差异的榴莲产地甄别. 食品科学, 2021, 42(14): 255-262. |
ZHOU X W, WU H, CHEN H Q, YAN Z, JIN B H, XIE L Q, ZHAO Y, ZHAO C M, CHEN H, PAN J R. Discrimination of durian from different geographical origins based on mineral element fingerprint characteristics. Food Science, 2021, 42(14): 255-262. (in Chinese) | |
[16] | COELHO I, MATOS A S, TEIXEIRA R, NASCIMENTO A, BORDADO J, DONARD O, CASTANHEIRA I. Combining multielement analysis and chemometrics to trace the geographical origin of Rocha pear. Journal of Food Composition and Analysis, 2019, 77: 1-8. |
[17] | 陈秋生, 张强, 殷萍, 刘烨潼, 孟兆芳, 张玺, 郭永泽. 电感耦合等离子体质谱法同时测定冬枣中多种元素的含量. 天津农业科学, 2015, 21(2): 5-8. |
CHEN Q S, ZHANG Q, YIN P, LIU Y T, MENG Z F, ZHANG X, GUO Y Z. Study on simultaneous determination of multiple elements in Chinese winter jujube with inductively coupled plasma mass spectrometry. Tianjin Agricultural Sciences, 2015, 21(2): 5-8. (in Chinese) | |
[18] | 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45(7): 982-992. |
JI L, SHEN H F, XU C C, CHEN Z D, FANG F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agronomica Sinica, 2019, 45(7): 982-992. (in Chinese) | |
[19] | 姜雪, 刘楠, 孙永, 牟伟丽, 周德庆. 统计分析方法在食品品质评价中的应用. 食品安全质量检测学报, 2017, 8(1): 13-19. |
JIANG X, LIU N, SUN Y, MOU W L, ZHOU D Q. Application of statistical analysis methods in food quality evaluation. Journal of Food Safety & Quality, 2017, 8(1): 13-19. (in Chinese) | |
[20] | 卓俊纳, 吴卫宇, 何霜, 赵金松. 基于ICP-MS结合化学计量学的不同品牌酱香型白酒鉴别方法. 食品与发酵工业, 2022(7): 269-275. |
ZHUO J N, WU W Y, HE S, ZHAO J S. Identification of Maotai-flavor Baijiu with different brands based on ICP-MS and chemometrics. Food and Fermentation Industries, 2022(7): 269-275. (in Chinese) | |
[21] | 佘僧, 李熠, 宋洪波, 陈兰珍. 低聚糖和多酚结合偏最小二乘判别分析鉴别油菜蜜产地. 食品科学, 2019, 40(12): 290-295. |
SHE S, LI Y, SONG H B, CHEN L Z. Discrimination of geographical origins of rape honey by polyphenol and oligosaccharide measurements combined with partial least square-discrimination analysis. Food Science, 2019, 40(12): 290-295. (in Chinese) | |
[22] | 钟慧怡, 黄海波, 陈玉娥, 覃挺红. 基于稳定同位素比值的阳春砂产地判别分析. 广州中医药大学学报, 2021, 38(10): 2224-2230. |
ZHONG H Y, HUANG H B, CHEN Y E, QIN T H. Discrimination and analysis of geographical origin of Amomum villosum based on stable isotope ratio. Journal of Guangzhou University of Traditional Chinese Medicine, 2021, 38(10): 2224-2230. (in Chinese) | |
[23] | 匡立学, 聂继云, 李志霞, 关棣锴, 毋永龙, 闫震, 程杨. 不同苹果品种果实矿质元素含量的因子分析和聚类分析. 中国农业科学, 2017, 50(14): 2807-2815. |
KUANG L X, NIE J Y, LI Z X, GUAN D K, WU Y L, YAN Z, CHENG Y. Factor analysis and cluster analysis of mineral elements contents in different apple varieties. Scientia Agricultura Sinica, 2017, 50(14): 2807-2815. (in Chinese) | |
[24] | 张强, 李民吉, 周贝贝, 李兴亮, 孙健, 张军科, 魏钦平. 两大优势产区‘富士’苹果园土壤养分与果实品质关系的多变量分析. 应用生态学报, 2017, 28(1): 105-114. |
ZHANG Q, LI M J, ZHOU B B, LI X L, SUN J, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chinese Journal of Applied Ecology, 2017, 28(1): 105-114. (in Chinese) | |
[25] | 张强, 李民吉, 周贝贝, 李兴亮, 张军科, 魏钦平. 环渤海湾和黄土高原‘富士’苹果园土壤养分与果实矿质元素关系的多变量分析. 园艺学报, 2017, 44(8): 1439-1449. |
ZHANG Q, LI M J, ZHOU B B, LI X L, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient and fruit mineral elements of ‘Fuji’ apple orchards in circum-Bohai and Loess plateau producing regions of China. Acta Horticulturae Sinica, 2017, 44(8): 1439-1449. (in Chinese) | |
[26] | 黄小龙, 何小青, 张念, 霍巨垣, 陈树娣, 邓宏玉. ICP-MS法测定多种微量元素用于地理标志产品苹果的鉴定. 食品科学, 2010, 31(8): 171-173. |
HUANG X L, HE X Q, ZHANG N, HUO J Y, CHEN S D, DENG H Y. ICP-MS analysis of trace elements in apples for identification of geographical origin. Food Science, 2010, 31(8): 171-173. (in Chinese) | |
[27] | 郭利攀, 裴华, 邢丽丽, 孙玉梅, 章路, 巩佳第, 戚亭. 微波消解-电感耦合等离子体质谱法测定花椒中稀土元素. 食品安全质量检测学报, 2021, 12(14): 5613-5619. |
GUO L P, PEI H, XING L L, SUN Y M, ZHANG L, GONG J D, QI T. Determination of rare earth elements in Zanthoxylum bungeanum Maxim. by microwave digestion with inductively coupled plasma mass spectrometry. Journal of Food Safety and Quality, 2021, 12(14): 5613-5619. (in Chinese) | |
[28] | 石春红, 曹美萍, 胡桂霞. 基于矿物元素指纹图谱技术的松江大米产地溯源. 食品科学, 2020, 41(16): 300-306. |
SHI C H, CAO M P, HU G X. Geographical origin traceability of Songjiang rice based on mineral elements fingerprints. Food Science, 2020, 41(16): 300-306. (in Chinese) | |
[29] | CAO T T, WANG J. Overview of soil swellability in major geographical areas of Shaanxi Province. World Scientific Research Journal, 2022, 8(3): 1-5. |
[30] | 史崇文, 赵玲芝, 郭新波, 高山, 杨建萍, 李建宏. 山西土壤元素背景值及其特征. 华北地质矿产杂志, 1994, 9(2): 188-196. |
SHI C W, ZHAO L Z, GUO X B, GAO S, YANG J P, LI J H. Background values of soil elementsin Shanxi and their distribution feature. Journal Geology and Mineral Resources North China, 1994, 9(2): 188-196. (in Chinese) | |
[31] | 乔德华, 魏胜文, 王恒炜, 梁志宏, 白贺兰. 甘肃苹果产业发展优势及提质增效对策. 中国农业资源与区划, 2016, 37(8): 168-174. |
QIAO D H, WEI S W, WANG H W, LIANG Z H, BAI H L. The apple industry development advantages in Gansu and quality efficiency countermeasures. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 168-174. (in Chinese) | |
[32] | 任圆圆, 张学雷. 河南省地形、土壤和地表水体多样性格局特征. 土壤学报, 2017, 54(3): 590-600. |
REN Y Y, ZHANG X L. Characteristics of the diversity of terrain, soil and surface water body of Henan Province in pattern. Acta Pedologica Sinica, 2017, 54(3): 590-600. (in Chinese) | |
[33] | 李瑾璞, 石垚, 袁大鹏, 陈奇乐, 王树涛. 河北省典型样带土壤类型空间格局特征. 农业资源与环境学报, 2020, 37(5): 681-688. |
LI J P, SHI Y, YUAN D P, CHEN Q L, WANG S T. Spatial pattern characteristics of soil types in typical transects of Hebei Province, China. Journal of Agricultural Resources and Environment, 2020, 37(5): 681-688. (in Chinese) | |
[34] | 赵海燕, 郭波莉, 张波, 魏益民, 孙淑敏, 严军辉, 张磊. 小麦产地矿物元素指纹溯源技术研究. 中国农业科学, 2010, 43(18): 3817-3823. |
ZHAO H Y, GUO B L, ZHANG B, WEI Y M, SUN S M, YAN J H, ZHANG L. The application of multi-element analysis to determine the geographical origin of wheat. Scientia Agricultura Sinica, 2010, 43(18): 3817-3823. (in Chinese) | |
[35] | 王天豪, 韩春兰, 王秋兵. 辽宁省植稻土壤在中国土壤系统分类中的归属. 土壤通报, 2018, 49(1): 1-8. |
WANG T H, HAN C L, WANG Q B. Identifying categories in Chinese soil taxonomy for typical rice field soils in Liaoning province. Chinese Journal of Soil Science, 2018, 49(1): 1-8. (in Chinese) | |
[36] | 夏立娅, 高巍, 李亚平, 尹洁璇, 张晓瑜, 李晓杨. 基于多元素分析的冬枣产地鉴别方法. 食品工业科技, 2016, 37(24): 49-52, 57. |
XIA L Y, GAO W, LI Y P, YIN J X, ZHANG X Y, LI X Y. Identification of Ziziphus jujuba origin by multi-element analysis. Science and Technology of Food Industry, 2016, 37(24): 49-52, 57. (in Chinese) | |
[37] | 王亚盟, 郭家平, 刘洁, 于斐, 田咏梅, 吴拥军, 刘利娥. 不同产地黑果枸杞中主要矿质元素含量比较及主成分分析. 食品工业科技, 2021, 42(11): 233-239. |
WANG Y M, GUO J P, LIU J, YU F, TIAN Y M, WU Y J, LIU L E. Comparison and principal component analysis of main mineral elements in Lycium ruthenicum Murray from different habitats. Science and Technology of Food Industry, 2021, 42(11): 233-239. (in Chinese) | |
[38] | 赵多勇, 康露, 王智, 乔坤云, 刘志虎, 袁玉伟, 郭航, 张瑞, 王成. 基于锶元素含量及其稳定同位素比值的库尔勒香梨产地鉴别. 食品科学, 2021, 42(18): 240-245. |
ZHAO D Y, KANG L, WANG Z, QIAO K Y, LIU Z H, YUAN Y W, GUO H, ZHANG R, WANG C. Geographical origin identification of Korla fragrant pear based on strontium content and stable isotopic ratio. Food Science, 2021, 42(18): 240-245. (in Chinese) | |
[39] | 琚彤军, 田均良, 刘普灵, 李雅琦, 张梅花. 利用INAA法研究黄土高原土壤REE含量及地域分布特征. 核农学报, 2002, 16(4): 242-246. |
JU T J, TIAN J L, LIU P L, LI Y Q, ZHANG M H. Study on ree contents in soil of loess plateau and their distributing characteristic by INAA method. Acta Agriculturae Nucleatae Sinica, 2002, 16(4): 242-246. (in Chinese) | |
[40] | 季宏兵, 王立军, 董云社, 王世杰, 罗建美, 孙媛媛. 稀土元素的环境生物地球化学循环研究现状. 地理科学进展, 2004, 23(1): 51-61. |
JI H B, WANG L J, DONG Y S, WANG S J, LUO J M, SUN Y Y. An overview on the study of biogeochemical cycle for rare earth elements(REEs). Progress in Geography, 2004, 23(1): 51-61. (in Chinese) | |
[41] | 刘春娥, 林洪, 宋雁, 郭斌, 刘兆平, 隋建新. 基于稀土元素指纹分析技术的紫菜产地溯源. 食品工业科技, 2016, 37(10): 57-61. |
LIU C E, LIN H, SONG Y, GUO B, LIU Z P, SUI J X. Geographical origin traceability of laver based on rare earth element fingerprints. Science and Technology of Food Industry, 2016, 37(10): 57-61. (in Chinese) | |
[42] | 林昕, 黎其万, 和丽忠, 兰珊珊, 林涛, 刘宏程. 基于稀土元素指纹分析判别普洱古树茶和台地茶的研究. 现代食品科技, 2013, 29(12): 2921-2925, 2893. |
LIN X, LI Q W, HE L Z, LAN S S, LIN T, LIU H C. Application of heavy rare earth element fingerprints in discrimination of Pu'er old plant tea and tableland tea. Modern Food Science and Technology, 2013, 29(12): 2921-2925, 2893. (in Chinese) | |
[43] | 姚清华, 林虬, 颜孙安, 苏德森, 林香信, 方灵. 基于稀土元素指纹分析判别安溪铁观音和华安铁观音的研究. 现代食品科技, 2017, 33(4): 295-299. |
YAO Q H, LIN Q, YAN S N, SU D S, LIN X X, FANG L. Application of heavy rare earth elements as a fingerprint in discriminant analysis of An’xi Tieguanyin tea and Hua’an Tieguanyin tea. Modern Food Science and Technology, 2017, 33(4): 295-299. (in Chinese) | |
[44] | 李安, 陈秋生, 赵杰, 潘立刚, 张强, 靳欣欣, 张少军, 钱训. 基于稳定同位素与稀土元素指纹特征的大桃产地判别分析. 食品科学, 2020, 41(6): 322-328. |
LI A, CHEN Q S, ZHAO J, PAN L G, ZHANG Q, JIN X X, ZHANG S J, QIAN X. Discriminations of the geographical origin of peach based on stable isotope and rare earth element fingerprint characteristics. Food Science, 2020, 41(6): 322-328. (in Chinese) | |
[45] | POTORÌ A G, DI BELLA G, MOTTESE A F, BUA G D, FEDE M R, SABATIONO G, SALVO A, SOMMA R, DUGO G, LO TURCO V. Traceability of protected geographical indication (PGI) interdonato lemon pulps by chemometric analysis of the mineral composition. Journal of Food Composition and Analysis, 2018, 69: 122-128. |
[1] | 熊淑萍,高明,张志勇,秦步坛,徐赛俊,付新露,王小纯,马新明. 基于GIS的河南省小麦产量及产量构成要素时空差异分析[J]. 中国农业科学, 2022, 55(4): 692-706. |
[2] | 王倩,李政,赵姗姗,郄梦洁,张九凯,王明林,郭军,赵燕. 稳定同位素技术在肉羊产地溯源中的应用[J]. 中国农业科学, 2021, 54(2): 392-399. |
[3] | 周一帆,杨林生,孟博,战健,邓燕. 中国甘蔗主产区产量差及影响因素分析[J]. 中国农业科学, 2021, 54(11): 2377-2388. |
[4] | 胡廷会,成良强,王军,吕建伟,饶庆琳. 不同基因型花生耐荫性评价及其鉴定指标的筛选[J]. 中国农业科学, 2020, 53(6): 1140-1153. |
[5] | 李宝鑫,杨俐苹,卢艳丽,师校欣,杜国强. 我国葡萄主产区的土壤养分丰缺状况[J]. 中国农业科学, 2020, 53(17): 3553-3566. |
[6] | 赵晴月,许世杰,张务帅,张哲,姚智,陈新平,邹春琴. 中国玉米主产区土壤养分的空间变异及影响因素分析[J]. 中国农业科学, 2020, 53(15): 3120-3133. |
[7] | 匡立学,聂继云,李银萍,程杨,沈友明. 中国不同地区‘富士’苹果品质评价[J]. 中国农业科学, 2020, 53(11): 2253-2263. |
[8] | 王佳豪,段雅倩,乜兰春,宋立彦,赵文圣,方思雨,赵佳腾. ‘羊角脆’类甜瓜果实品质因子分析及综合评价[J]. 中国农业科学, 2019, 52(24): 4582-4591. |
[9] | 李继荣,张唐伟,次仁德吉,杨小俊,次顿. 糌粑加工过程中稳定同位素指纹分馏效应分析[J]. 中国农业科学, 2019, 52(24): 4592-4602. |
[10] | 苟小菊,田由,郭玉蓉,杨曦,侯燕杰,平嘉欣,李婷. 不同成熟期苹果品种非浓缩还原汁品质评价与分析[J]. 中国农业科学, 2018, 51(19): 3778-3790. |
[11] | 张曼曼, 王增辉, 毛云飞, 柴姗姗, 赵晓红, 范义昌, 倪伟, 毛志泉, 陈学森, 沈向. 不同授粉组合对‘富士’和‘新红星’苹果品质的影响[J]. 中国农业科学, 2018, 51(18): 3551-3560. |
[12] | 刘宏艳,郭波莉,魏帅,姜涛,张森燊,魏益民. 小麦制粉产品稳定碳、氮同位素组成特征[J]. 中国农业科学, 2017, 50(3): 556-563. |
[13] | 范子玲,许楚楚,舒适,肖鑫焕,王刚,白云龙,张江,赵畅,夏成. 基于GC/MS技术的产后卵巢静止奶牛血浆代谢谱分析[J]. 中国农业科学, 2017, 50(15): 3042-3051. |
[14] | 明博,谢瑞芝,侯鹏,李璐璐,王克如,李少昆. 2005—2016年中国玉米种植密度变化分析[J]. 中国农业科学, 2017, 50(11): 1960-0972. |
[15] | 李建军,徐明岗,辛景树,段建军,任意,李冬初,黄晶,申华平,张会民. 中国稻田土壤基础地力的时空演变特征[J]. 中国农业科学, 2016, 49(8): 1510-1519. |
|