中国农业科学 ›› 2021, Vol. 54 ›› Issue (13): 2858-2869.doi: 10.3864/j.issn.0578-1752.2021.13.014
收稿日期:
2020-08-28
修回日期:
2020-11-08
出版日期:
2021-07-01
发布日期:
2021-07-12
通讯作者:
崔虎亮
作者简介:
崔虎亮,E-mail: 基金资助:
CUI HuLiang1(),HE Xia2,ZHANG Qian2
Received:
2020-08-28
Revised:
2020-11-08
Online:
2021-07-01
Published:
2021-07-12
Contact:
HuLiang CUI
摘要:
【目的】牡丹(Paeonia suffruticosa)是中国传统名花之一,花色丰富,品种多样,通过测定不同花色品种在花朵开放期间花瓣花青素苷、类黄酮苷的种类和含量,并分析其动态变化规律,为牡丹花色的呈色机理及不同花色育种提供参考。【方法】选择5种不同花色的牡丹品种为试验材料,采集蕾期(S1)、露色期(S2)、盛开期(S3)和衰败期(S4)等4个不同时期的花瓣,利用高效液相色谱(HPLC)和质谱联用(LC-MS)技术对其花青素苷和类黄酮苷进行定性定量分析,比较不同花色品种之间的差异。【结果】检测到6种花青素苷和12种类黄酮苷。其中,紫色品种‘洛阳红’检测到的花青素苷种类最多,花瓣中共检测到4种花青素苷,而白色品种‘白雪塔’中未检测到花青素苷;在检测出的12种类黄酮苷中,芹菜素5-葡萄糖苷(7.18%—58.46%)、芹菜素己糖葡萄糖苷(1.44%—43.72%)和山奈酚3,7-葡萄糖苷(2.83%—43.44%)的相对含量明显高于其他物质。6种花青素苷在花朵开放期间不断积累,从蕾期(S1)至衰败期(S4),花青素总含量不断增加,其中在盛开期(S3)总含量显著增加,在S4时期达到最高值。类黄酮物质总含量在花朵开放与衰老期间呈现先增加后降低的趋势,但不同品种的变化趋势差异明显。‘洛阳红’的类黄酮总含量在衰败期(S4)达到最大值(752.93±48.10)μg∙g-1 FW,‘赵粉’在盛开期(S3)达到最大值(603.81±6.30)μg∙g-1 FW,‘白雪塔’在露色期(S2)达到最大值(673.45±9.96)μg∙g-1 FW,‘迎日红’和‘粉荷’均在蕾期(S1)达到最大值,其含量分别为(525.88±22.38)μg∙g-1 FW和(740.56±16.08)μg∙g-1 FW。【结论】不同颜色的牡丹品种中花青素苷和类黄酮苷差异较为显著,紫色品种花青素苷含量较高,白色品种几乎不含有花青素苷。花青素苷在花朵开放过程中不断积累,而类黄酮苷存在先积累后降解的变化趋势。
崔虎亮,贺霞,张前. 不同牡丹品种开花期间花瓣花青素和类黄酮组成的动态变化[J]. 中国农业科学, 2021, 54(13): 2858-2869.
CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages[J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
表1
不同牡丹品种花青素结构推定的色谱、波长和质谱信息"
峰序号 Peak number | 推定物质 Putative identification matter | 保留时间 Rt (min) | 吸收波长 λmax (nm) | 母离子+ [M+H]+ | 二级离子 MS2-PI | 参考依据 Reference |
---|---|---|---|---|---|---|
1 | Cy3g5g | 12.22 | 278.22, 512.18 | 611.16 | 287.3 | [ |
2 | Pg3g5g | 14.13 | 274.69, 496.69 | 595.17 | 271.06 | [ |
3 | Pn3g5g | 14.93 | 279.12, 513.17 | 625.15 | 301.1 | [ |
4 | Cy3g | 16.18 | 280.32, 514.05 | 449.1 | 287.3 | 标准品 Std |
5 | Pg3g | 18.22 | 266.70, 499.91 | 433.01 | 271.06 | [ |
6 | Pn3g | 19.21 | 279.22, 516.05 | 463.12 | 301.1 | [ |
表2
牡丹品种花瓣中黄酮类化合物的色谱、光谱和质谱特征数据"
峰序号 Peak number | 推定物质 Putative identification matter | 保留时间 Rt (min) | 最大波长 λmax (nm) | 质谱离子ESIMS (m/z) | 参考依据 Reference | |||
---|---|---|---|---|---|---|---|---|
母离子+ [M+H]+ | 二级离子+ MS2-PI | 母离子- [M-H]- | 二级离子- MS2-NI | |||||
1 | 未知 Unknown | 14.41 | 352.7 | - | - | - | - | |
2 | 未知 Unknown | 15.78 | 331.9 | 465.08 | 303.02/229.05 | 463.09 | 271.00 | |
3 | Km3g7g | 16.54 | 265.11, 345.81 | 633 | 449 | 609 | 447/285.04 | [6,8] |
4 | Km3g | 17.24 | 266.22, 352.43 | 471.24 | 287.05 | 447.34 | 284.16/249.04 | [8] |
5 | Rutin | 22.76 | 326.9 | 610.53 | 609.1 | 301.04 | std | |
6 | Km7g | 23.2 | 266.03, 362.07 | 449.11 | 287.05 | 447.09 | 285.04 | [8] |
7 | Qu3g | 24.08 | 254.08, 347.39 | 487.12 | 303.01 | 463.09 | 301.03 | std |
8 | 未知Unknown | 26.27 | 269.81, 336.57 | 625.17 | 479.12 | - | - | |
9 | Ap5g | 26.97 | 268.33, 336.57 | 433.11 | 256.96 | 431.36 | 269.22 | [6,8] |
10 | Aphg | 27.59 | 265.21, 336.51 | 601.28 | 579.26/433.2/271.07 | 577.44 | 431.36/269.17 | [6,8] |
11 | Lt7g | 27.88 | 266.01, 344.77 | 449.1 | 287.05/135.05 | 447.21 | 285.01 | [6,8] |
12 | My | 28.56 | 269.11, 345.29 | 319.04 | 217.05 | 463.1 | 179 | std |
表3
牡丹4个品种花朵开放期间花青素苷含量动态变化"
品种 Cultivar | 化合物 Compound | 蕾期 Bud Stage | 露色期 Initial blooming stage | 盛开期 Blooming stage | 衰败期 Wither stage |
---|---|---|---|---|---|
LYH | Cy3g5g | 4.24±0.73d | 8.70±0.76c | 15.04±1.62b | 26.22±0.78a |
Pn3g5g | 9.80±1.22d | 29.59±3.52c | 48.72±1.39b | 86.50±3.89a | |
Cy3g | 2.99±0.29d | 11.04±1.33c | 42.38±1.13b | 139.63±7.10a | |
Pn3g | 3.47±0.22c | 8.66±1.14c | 26.46±3.42b | 87.38±9.64a | |
合计 Total | 20.50±1.74d | 57.99±6.05c | 132.59±5.25b | 340.06±9.50a | |
FH | Pg3g5g | - | - | - | 2.73±0.82 |
Pn3g5g | 4.94±0.87b | 7.48±0.73a | 8.02±1.66a | 9.62±1.62a | |
合计 Total | 4.94±0.87c | 7.48±0.73b | 8.02±1.66b | 12.35±1.41a | |
YRH | Pg3g5g | 13.95±4.76c | 22.02±5.65b | 35.48±5.28a | 33.17±2.03a |
Pg3g | 3.48±1.70c | 6.25±1.68ab | 4.69±1.28bc | 7.72±0.67a | |
合计 Total | 16.27±6.24bc | 28.27±7.32ab | 40.17±6.41a | 40.89±1.53a | |
ZF | Pg3g5g | - | 4.43±2.15b | 7.00±0.83a | 5.12±0.96ab |
表4
牡丹5个品种花朵开放期间类黄酮苷含量动态变化"
品种 Cultivar | 化合物 Compound | 蕾期 Bud Stage | 露色期 Initial blooming stage | 盛开期 Blooming stage | 衰败期 Wither stage |
---|---|---|---|---|---|
LYH | 峰1 Peak 1 | 4.98±0.37d | 14.61±3.06c | 22.58±3.69b | 26.08±7.39a |
峰2 Peak 2 | 5.07±0.36b | 10.53±2.35a | 13.55±3.00a | 5.38±3.15b | |
Km3g7g | 13.11±2.08d | 33.93±7.46c | 50.51±8.56b | 72.10±15.70a | |
Km3g | 12.00±1.42c | 25.48±6.50b | 26.70±3.72b | 66.86±13.43a | |
Rutin | 4.32±0.17b | 7.39±1.43a | 8.67±1.72a | 6.33±5.03ab | |
Km7g | 4.42±0.06b | 6.67±1.24a | 8.29±1.94a | 7.37±2.77a | |
Qu3g | 206.18±34.09b | 254.00±13.21a | 243.70±21.08a | 232.37±15.81a | |
峰8 Peak 8 | 5.62±0.24cd | 8.19±1.57b | 11.73±2.53a | 6.29±3.11bc | |
Ap5g | 84.13±4.83c | 111.64±16.90b | 159.68±11.85a | 147.41±15.63a | |
Aphg | 61.19±1.64b | 81.58±4.58b | 83.11±6.68b | 123.29±14.70a | |
Lt7g | 37.83±4.70b | 38.61±6.78b | 45.37±6.37a | 39.15±3.84b | |
My | 24.71±2.99a | 20.34±4.93b | 22.77±3.35a | 20.29±4.05b | |
山奈酚总含量Total km | 29.54±3.55c | 66.08±14.88b | 85.50±14.14b | 146.34±17.60a | |
芹菜素总含量Total ap | 145.32±5.17b | 193.22±15.21b | 242.79±17.93a | 270.70±28.52a | |
合计 Total | 463.58±44.14c | 612.98±31.23b | 696.67±12.25ab | 752.93±48.10a | |
FH | 峰1 Peak 1 | 7.85±2.24a | 6.99±3.72a | 4.83±1.27b | 5.03±3.03b |
峰2 Peak 2 | 17.34±2.49a | 12.31±5.82b | 8.94±2.06c | 15.62±3.78ab | |
Km3g7g | 58.04±7.36b | 77.78±9.03a | 75.13±5.25a | 88.24±5.57a | |
Km3g | 12.33±0.72ab | 11.11±0.58b | 10.56±1.47bc | 12.69±4.41a | |
Rutin | 3.12±0.03b | — | 4.22±1.94a | 4.28±0.98a | |
Km7g | 3.73±0.03a | — | 3.77±1.69a | 1.84±0.43b | |
Qu3g | 27.41±1.28a | 18.12±2.76ab | 13.57±1.01b | 14.01±2.89b | |
峰8 Peak 8 | 29.96±1.14a | 19.99±4.73b | 16.69±4.56b | 15.84±1.48b | |
Ap5g | 432.95±27.17a | 333.13±13.86b | 247.42±19.42d | 251.88±28.77c | |
Aphg | 132.20±7.25b | 164.13±1.36a | 125.38±11.46c | 28.09±7.47e | |
Lt7g | 14.05±0.24b | 5.40±3.34c | 5.17±1.19c | 15.39±3.25a | |
My | 6.15±0.58a | 4.64±0.43b | 3.33±0.03c | 3.78±0.25b | |
山奈酚总含量Total km | 71.61±6.87c | 59.26±15.67d | 88.20±7.35b | 102.16±10.46a | |
芹菜素总含量Total ap | 565.15±24.11a | 331.51±27.33b | 372.80±10.57b | 279.96±22.45bc | |
合计 Total | 740.56±16.08a | 435.72±37.50c | 515.53±19.46b | 456.07±26.12bc | |
BXT | 峰1 Peak 1 | 6.26±2.04b | 7.71±0.03b | 12.24±1.43a | 6.00±1.82b |
峰2 Peak 2 | 6.23±1.93c | 19.61±1.77b | 39.89±7.15a | 32.92±10.35a | |
Km3g7g | 10.52±2.48c | 67.29±3.54b | 159.68±15.43a | 179.49±17.09a | |
Km3g | 13.02±3.61a | 4.04±0.54b | 14.24±1.90a | 8.02±1.63b | |
Qu3g | 183.68±46.64a | 7.37±1.32d | 12.85±2.15c | 6.08±1.96d | |
峰8 Peak 8 | 7.32±2.30c | 14.46±2.66b | 19.15±1.94a | 8.05±1.91c | |
Ap5g | 74.10±18.05d | 259.97±21.93b | 304.54±25.31a | 145.99±19.20c | |
Aphg | 4.84±1.64d | 294.44±76.50a | 45.72±5.24b | 16.94±6.61c | |
品种 Cultivar | 化合物 Compound | 蕾期 Bud Stage | 露色期 Initial blooming stage | 盛开期 Blooming stage | 衰败期 Wither stage |
Lt7g | na | 6.01±1.73c | 14.25±0.38a | 5.46±1.41c | |
My | 24.65±5.72a | 3.10±0.03bc | 7.50±0.80b | 2.42±0.71c | |
山奈酚总含量Total km | 29.79±8.14c | 69.98±2.00b | 173.92±17.31a | 187.51±18.57a | |
芹菜素总含量Total ap | 78.95±9.66d | 554.41±18.93a | 350.26±30.35b | 162.93±14.23c | |
合计 Total | 336.87±6.44c | 673.45±9.96a | 625.98±15.87a | 413.18±25.33b | |
YRH | 峰1 Peak 1 | 3.89±1.60ab | 5.04±0.53a | 4.14±0.80a | 4.75±0.42a |
峰2 Peak 2 | 14.68±1.05b | 12.44±2.58b | 5.44±2.48c | 23.68±8.08a | |
Km3g7g | 76.80±3.73b | 68.99±2.30b | 72.09±3.25b | 117.40±11.45a | |
Km3g | 5.94±1.23a | 5.97±0.78a | 4.11±0.45a | 5.32±0.26a | |
Rutin | 6.96±3.96b | 8.14±1.09ab | 10.83±0.66a | 4.75±1.28c | |
Qu3g | 4.99±0.71a | 3.79±0.67a | 2.76±0.89a | 4.31±0.54a | |
峰8 Peak 8 | 11.52±3.26a | 11.91±2.03a | 8.89±0.61b | 12.20±4.26a | |
Ap5g | 262.87±5.68a | 250.79±28.04a | 173.83±18.97b | 252.57±30.53a | |
Aphg | 137.57±10.44a | 128.71±34.98a | 58.71±9.04b | 57.09±18.54b | |
山奈酚总含量Total km | 82.75±4.89b | 74.97±2.63b | 76.20±3.57b | 122.72±11.20a | |
芹菜素总含量Total ap | 400.44±16.11a | 379.50±14.87a | 232.54±7.63c | 309.66±4.77b | |
合计 Total | 525.88±22.38a | 495.79±13.54a | 340.80±5.82b | 482.06±24.03a | |
ZF | 峰1 Peak 1 | 5.10±0.55b | 7.40±0.67b | 13.16±0.03a | 6.60±1.60b |
峰2 Peak 2 | 9.96±4.36ab | 9.63±4.32b | 16.28±9.32a | 16.75±1.48a | |
Km3g7g | 50.88±3.86b | 69.01±15.50b | 77.41±3.70b | 100.30±1.84a | |
Km3g | 4.55±0.51a | 5.87±1.59a | 6.29±0.70a | 2.54±0.14b | |
Qu3g | 7.96±1.39ab | 8.66±2.28a | 10.31±1.93a | 4.37±0.59b | |
峰8 Peak 8 | 11.29±2.19a | 12.31±4.53a | 15.07±2.19a | 6.60±1.37b | |
Ap5g | 231.30±52.55b | 250.31±76.68b | 263.98±30.52a | 173.39±25.33c | |
Aphg | 154.19±59.74c | 161.46±76.31b | 202.70±21.61a | 124.80±29.55d | |
Lt7g | 4.08±0.03ab | na | 8.99±0.03a | 3.55±1.08b | |
My | 3.50±0.22b | 3.29±1.55b | 6.48±0.83a | na | |
山奈酚总含量Total km | 55.42±4.34d | 74.88±1.99c | 81.60±0.04b | 102.83±1.98a | |
芹菜素总含量Total ap | 385.49±3.30c | 411.77±15.86b | 466.68±2.53a | 298.19±4.19d | |
合计 Total | 478.39±8.64ab | 524.38±16.89a | 603.81±6.30a | 438.89±6.62b |
[1] | STERN F C. A Study of The Genus Paeonia. London: Royal Horticulture Society, 1946. |
[2] | 李嘉珏, 张西方, 赵孝庆. 中国牡丹. 北京:中国大百科全书出版社, 2011:15-17. |
LI J J, ZHANG X F, ZHAO X Q. Chinese Peony. Beijing:Encyclopaedia of China Publishing House, 2011:15-17. (in Chinese) | |
[3] |
CUI H L, CHEN C R, HUANG N Z, CHENG F Y. Association analysis of yield, oil and fatty acid content, and main phenotypic traits in Paeonia rockii as an oil crop. The Journal of Horticultural Science and Biotechnology, 2018, 93(4):425-432.
doi: 10.1080/14620316.2017.1381045 |
[4] | 王莲英, 袁涛. 中国牡丹品种图志. 北京:中国林业出版社, 1997:25-28. |
WANG L Y, YUAN T. Sequel of Chinese Tree Peony. Beijing:China Forestry Publishing House, 1997:25-28. (in Chinese) | |
[5] |
WANG L S, SHIRAISHIA, HASHIMOTOF, AOKI N, SHIMIZU K, SAKATA Y. Analysis of petal anthocyanins to investigate flower colouration of Zhongyuan (Chinese) and daikon island (Japanese) tree peony cultivars. Journal of Plant Research, 2001, 114(1113):33-43.
doi: 10.1007/PL00013966 |
[6] |
FAN J L, ZHU W X, KANG H B, MA H L, TAO G J. Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree penoy cultivars. Journal of Functional Foods, 2012, 4(1):147-157.
doi: 10.1016/j.jff.2011.09.006 |
[7] |
BAO Y T, QU Y, LI J H, LI Y F, REN X D, MAFFUCCI K G, LI R P, WANG Z G, ZENG R. In vitro andin vivo antioxidant activities of the flowers and leaves from Paeonia rockii and identification of their antioxidant constituents by UHPLC-ESI-HRMSn via pre-column DPPH reaction. Molecules, 2018, 23(2):392.
doi: 10.3390/molecules23020392 |
[8] |
LI C H, DU H, WANG L S, SHU Q Y, ZHENG Y R, XU Y J, ZHANG J L, ZHANG J, YANG R Z, GE Y X. Flavonoid composition and antioxidant activity of Tree Peony (Paeonia Section Moutan) yellow flowers. Journal of Agricultural and Food Chemistry, 2009, 57(18):8496-8503.
doi: 10.1021/jf902103b |
[9] |
YANG Y, LI B, FENG C Y, WU Q, WANG Q Y, LI S S, YU X N, WANG L S. Chemical mechanism of flower color microvariation in Paeonia with yellow flowers. Horticultural Plant Journal, 2020, 6(3):179-190.
doi: 10.1016/j.hpj.2020.04.002 |
[10] |
ZHAO D Q, TANG W H, HAO Z J, TAO J. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochemical and Biophysical Research Communications, 2015, 459(3):450-456.
doi: 10.1016/j.bbrc.2015.02.126 |
[11] |
JIA N, SHU Q Y, WANG L S, DU H, XU Y J, LIU Z A. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Scientia Horticulturae, 2008, 117(2):167-173.
doi: 10.1016/j.scienta.2008.03.016 |
[12] |
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[13] | 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49(3):529-542. |
DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3):529-542. (in Chinese) | |
[14] |
GROTEWOLD E. The genetics and biochemistry of floral pigments. Annual review of plant biology, 2006, 57:761-780.
doi: 10.1146/annurev.arplant.57.032905.105248 |
[15] |
SHI Q Q, LI L, ZHANG X X, LUO J R, LI X, ZHAI L J, HE L X, ZHANG Y L. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in Paeonia rockii. Molecules, 2017, 22(8):1364.
doi: 10.3390/molecules22081364 |
[16] | ZHANG Y Z, CHENG Y W, YA H Y, XU Z Z, HAN J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in Plant Science, 2015, 6:964. |
[17] |
QI Y, ZHOU L, HAN L L, ZOU H Z, MIAO K, WANG Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 2020, 154:396-408.
doi: 10.1016/j.plaphy.2020.06.015 |
[18] | GU Z Y, ZHU J, HAO Q, YUAN Y U, DUAN Y W, MEN S Q, WANG Q Y, HOU Q Z, LIU Z A, SHU Q Y, WANG L S. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa). Plant & Cell Physiology, 2019, 60(3):599-611. |
[19] | 于世林. 图解高效液相色谱与应用. 北京:科学出版社, 2009:56-66. |
YU S. Graphic High Performance Liquid Chromatography and Its Application. Beijing:The Science Publishing Company, 2009:56-66. (in Chinese) | |
[20] |
YILDIRIM S, KADIOGLU A, SAGLAM A, YASAR A, SELLITEPE H E. Fast determination of anthocyanins and free pelargonidin in fruits, fruit juices, and fruit wines by high-performance liquid chromatography using a core-shell column. Journal of Separation Science, 2016, 39(20):3927-3935.
doi: 10.1002/jssc.201600661 |
[21] |
ZHANG J J, WANG L S, SHU Q Y, LIU Z A, LI C H, ZHANG J, WEI X L, TIAN D K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Scientia Horticulturae, 2007, 114(2):104-111.
doi: 10.1016/j.scienta.2007.05.009 |
[22] |
SINGH R, WU B J, TANG L, LIU Z Q, HU M. Identification of the position of Mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (λmax) generated from an online diode array detector. Journal of Agricultural and Food Chemistry, 2010, 58(17):9384-9395.
doi: 10.1021/jf904561e |
[23] | 张玲, 徐宗大, 汤腾飞, 张辉, 赵兰勇. ‘紫枝’玫瑰(Rosa rugosa ‘Zi zhi’)开花过程花青素相关化合物及代谢途径分析. 中国农业科学, 2015, 48(13):2600-2611. |
ZHANG L, XU Z D, TANG T F, ZHANG H, ZHAO L Y. Analysis of anthocyanins related compounds and their biosynthesis pathways in Rosa rugosa ‘Zi Zhi’ at blooming stages . Scientica Agricultura Sinica, 2015, 48(13):2600-2611. (in Chinese) | |
[24] |
WAN H H, YU C, HAN Y, GUOX L, AHMAD S, TANG A Y, WANG J, CHENG T R, PAN H T, ZHANG Q X. Flavonols and carotenoids in yellow petals of rose cultivar (Rosa ‘Sun City’): A possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 2018, 66(16):4171-4181.
doi: 10.1021/acs.jafc.8b01509 |
[25] | CHEN S, XIANG Y, DENG J, LIU Y L, LI S H. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different Lotus(Nelumbo) cultivars by HPLC-DAD- ESI-MSn. PLoS ONE, 2013, 8(4):e62291. |
[26] |
LI Q, WANG J, SUN H Y, SHANG X. Flower color patterning in pansy (Viola×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiology and Biochemistry, 2014, 84:134-141.
doi: 10.1016/j.plaphy.2014.09.012 |
[27] |
WANG X, CHENG C, SUN Q L, LI F W, LIU J H, ZHENG C C. Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography. Journal of chromatography A, 2005, 1075(1):127-131.
doi: 10.1016/j.chroma.2005.04.017 |
[28] |
KITDAMRONGSONT K, PPTHAVORN P, SWANGPOL S, WONGNIAM S, ATAWONGSA K, SVASTI J, SOMANA J. Anthocyanin composition of wild bananas in Thailand. Journal of Agricultural and Food Chemistry, 2008, 56(22):10853-10857.
doi: 10.1021/jf8018529 |
[29] |
STOCHMAL A, SIMONET A M, MACIAS F A, OLIVEIRA M A, ABREU J M, NASH R, OLESZEK W. Acylated apigenin glycosides from alfalfa (Medicago sativa L.) var. Artal. Phytochemistry, 2001, 57(8):1223-1226.
doi: 10.1016/S0031-9422(01)00204-7 |
[30] |
POP R M, SOCACIU C, PINTEA A, BUZOIANU A D, SANDERS M G. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different carpathian Hippophaë rhamnoides L. varieties. Phytochemical Analysis, 2013, 24(5):484-492.
doi: 10.1002/pca.v24.5 |
[31] |
NAKATSUKA T, SUZUKI T, HARADA K, KOBAYASHI Y, DOHRA H, OHNO H. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers. Plant Science, 2019, 287:110173.
doi: 10.1016/j.plantsci.2019.110173 |
[32] |
SUI X N, ZHANG Y, ZHOU W B. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 2016, 21:50-57.
doi: 10.1016/j.jff.2015.11.042 |
[33] |
ZHANG C, WANG W N, WANG Y J, GAO S L, DU D N, FU J X, DONG L. Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’. Postharvest Biology and Technology, 2014, 97:11-22.
doi: 10.1016/j.postharvbio.2014.05.019 |
[34] |
MITCHELL K, MARKHAM K R, BOASE M R. Pigment chemistry and colour of pelargonium flowers. Phytochemistry, 1998, 47(3):355-361.
doi: 10.1016/S0031-9422(97)00595-5 |
[35] | 赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理. 植物学通报, 2005, 22(1):70-81. |
ZHAO C L, GUO W M, CHEN J Y. Formation and regulation of flower color in higher plants. Chinese Bulletin of Botany, 2005, 22(1):70-81. (in Chinese) | |
[36] | 杨琴, 袁涛, 孙湘滨. 两个牡丹品种开花过程中花色变化的研究. 园艺学报, 2015, 42(5):930-938. |
YANG Q, YUAN T, SUN X B. Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars. Acta Horticulturae Sinica, 2015, 42(5):930-938. (in Chinese) | |
[37] |
GUO L, YIN Z Y, WEN L, XIN J, GAO X, ZHENG X X. Flower extracts from Paeonia decomposita and Paeonia ostii inhibit melanin synthesis via Camp-REB-ssociated melanogenesis signaling pathways in murine B16 melanoma cells. Journal of Food Biochemistry, 2019, 43(4):e12777.
doi: 10.1111/jfbc.2019.43.issue-4 |
[38] |
XIE L H, YAN Z G, LI M C, TIAN Y, KILARU A, NIU L X, ZHANG Y L. Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC-based analysis. Industrial Crops and Products, 2020, 154:112711.
doi: 10.1016/j.indcrop.2020.112711 |
[1] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[2] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
[3] | 韩晓, 杨航宇, 陈为凯, 王军, 何非. 不同砧木对欧亚种葡萄‘丹娜’果实类黄酮物质的影响[J]. 中国农业科学, 2022, 55(10): 2013-2025. |
[4] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[5] | 叶迪,施江,高双成,王占营,史国安. 乙烯促进牡丹‘洛阳红’切花花瓣脱落与内源生长素的关联性分析[J]. 中国农业科学, 2021, 54(23): 5097-5109. |
[6] | 林兵,陈艺荃,钟淮钦,叶秀仙,樊荣辉. 荷兰鸢尾‘玉妃’花色变异关键结构基因分析[J]. 中国农业科学, 2021, 54(12): 2644-2652. |
[7] | 马建, 李丛丛, 黄亚婷, 谢雨黎, 程玲玲, 王建设. 甜瓜种皮颜色控制基因CmSC1的精细定位及候选基因分析[J]. 中国农业科学, 2021, 54(10): 2167-2178. |
[8] | 郝小燕,牟春堂,乔栋,张暄梓,杨文军,赵俊星,张春香,张建新. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响[J]. 中国农业科学, 2021, 54(10): 2239-2248. |
[9] | 贺丹,谢栋博,张佼蕊,何松林,李朝梅,郑云冰,王政,刘艺平,栗燕,逯久幸. 利用iTRAQ技术和转录组筛选芍药属远缘杂交不亲和基因[J]. 中国农业科学, 2020, 53(6): 1234-1246. |
[10] | 许明,林世强,倪冬昕,伊恒杰,刘江洪,杨志坚,郑金贵. 藤茶查尔酮合成酶基因AgCHS1的克隆及功能鉴定[J]. 中国农业科学, 2020, 53(24): 5091-5103. |
[11] | 王峰,王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学, 2020, 53(23): 4904-4917. |
[12] | 宋杨,刘红弟,王海波,张红军,刘凤之. 越橘VcNAC072克隆及其促进花青素积累的功能分析[J]. 中国农业科学, 2019, 52(3): 503-511. |
[13] | 狄少康,尹青岗,夏亚迎,庞永珍. 大豆类黄酮糖基转移酶基因UGT73C19的功能研究[J]. 中国农业科学, 2019, 52(20): 3507-3519. |
[14] | 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析[J]. 中国农业科学, 2019, 52(15): 2678-2685. |
[15] | 李辛雷,殷恒福,范正琪,李纪元. 山茶芽变花色与花青苷的关系[J]. 中国农业科学, 2019, 52(11): 1961-1969. |
|