[1] |
HAGEN G, GUILFOYLE T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49:373-385.
doi: 10.1023/A:1015207114117
|
[2] |
BELHAJ K, CHAPARRO-GARCIA A, KAMOUN S, PATRON N J, NEKRASOV V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 2015, 32:76-84.
doi: 10.1016/j.copbio.2014.11.007
|
[3] |
CARROLL D, MORTON J J, BEUMER K J, SEGAL D J. Design, construction and in vitro testing of Zinc finger nucleases. Nature Protocols, 2006, 1(3):1329-1341.
doi: 10.1038/nprot.2006.231
|
[4] |
LI T, LIU B, SPALDING M H, WEEKS D P, YANG B. High- efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 2012, 30(5):390-392.
doi: 10.1038/nbt.2199
|
[5] |
卢俊南, 褚鑫, 潘燕平, 陈映羲, 温栾, 戴俊彪. 基因编辑技术: 进展与挑战. 中国科学院院刊, 2018, 33(11):1184-1192.
|
|
LU J N, CHU X, PAN Y P, CHEN Y X, WEN L, DAI J B. Advances and challenges in gene editing technologies. Bulletin of the Chinese Academy of Sciences, 2018, 33(11):1184-1192. (in Chinese)
|
[6] |
WANG F J, WANG C L, LIU P Q, LEI C L, HAO W, GAO Y, LIU Y G, ZHAO K J. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE, 2016, 11(4):e0154027.
doi: 10.1371/journal.pone.0154027
|
[7] |
ZHOU H, HE M, LI J, CHEN L, HUANG Z F, ZHENG S Y, ZHU L Y, NI E, JIANG D G, ZHAO B R, ZHUANG C X. Development of commercial Thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports, 2016, 6:37395-37406.
doi: 10.1038/srep37395
|
[8] |
ZONG Y, WANG Y P, LI C, ZHANG R, CHEN K L, RAN Y D, QIU J L, WANG D W, GAO C X. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35(5):438-441.
doi: 10.1038/nbt.3811
|
[9] |
ZENSER N, ELLSMORE A, LEASURE C, CALLIS J. Auxin modulates the degradation rate of Aux/IAA proteins. Proceedings of the National Academy of Sciences of the USA, 2001, 98(20):11795-11800.
|
[10] |
KEPINSKI S, LEYSER O. Auxin-induced SCFTIR1-Aux/IAAinteraction involves stable modification of the SCFTIR1 complex. Proceedings of the National Academy of Sciences of the USA, 2004, 101(33):12381-12386.
|
[11] |
TIWARI S B, HAGEN G, GUILFOYLE T. The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell, 2003, 15(2):533-543.
doi: 10.1105/tpc.008417
|
[12] |
OUELLET F, OVERVOORDE P J, THEOLOGIS A. IAA17/AXR3: Biochemical insight into an auxin mutant phenotype. The Plant Cell, 2001, 13:829-841.
doi: 10.1105/tpc.13.4.829
|
[13] |
JAIN M, KAUR N, GARG R, THAKUR J K, TYAGI A K, KHURANA J P. Structure and expression analysis of early auxin- responsive Aux/IAA gene family in rice (Oryza sativa). Functional & Integrative Genomics, 2006, 6(1):47-59.
|
[14] |
SONG Y, WANG L, XIONG L Z. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009, 229:577-591.
doi: 10.1007/s00425-008-0853-7
|
[15] |
SONG Y, YOU J, XIONG L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Molecular Biology, 2009, 70(3):297-309.
doi: 10.1007/s11103-009-9474-1
|
[16] |
NAKAMURA A, UMEMURA I, GOMI K, HASEGAWA Y, KITANO H, SAZUKA T, MATSUOKA M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. The Plant Journal, 2006, 46(2):297-306.
doi: 10.1111/tpj.2006.46.issue-2
|
[17] |
JUNG H, LEE D K, CHOI Y D, KIM J K. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Science, 2015, 236:304-312.
doi: 10.1016/j.plantsci.2015.04.018
|
[18] |
KITOMI Y, INAHASHI H, TAKEHISA H, SATO Y, INUKAI Y. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Plant Science, 2012, 190:116-122.
doi: 10.1016/j.plantsci.2012.04.005
|
[19] |
JIN L, QIN Q, WANG Y, PU Y, LIU L, WEN X, JI S, WU J, WEI C, DING B, LI Y. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathogens, 2016, 12(9):e1005847.
doi: 10.1371/journal.ppat.1005847
|
[20] |
NI J, WANG G, ZHU Z, ZHANG H, WU Y, WU P. OsIAA23- mediated auxin signaling defines postembryonic maintenance of QC in rice. The Plant Journal, 2011, 68(3):433-442.
doi: 10.1111/tpj.2011.68.issue-3
|
[21] |
ZHU Z X, LIU Y, LIU S J, MAO C Z, WU Y R, WU P. A gain-of- function mutation in OsIAA11 affects lateral root development in rice. Molecular Plant, 2012, 5(1):154-161.
doi: 10.1093/mp/ssr074
|
[22] |
LI Z, PAN X, GUO X, FAN K, LIN W. Physiological and transcriptome analyses of early leaf senescence for ospls1 mutant rice (Oryza sativa L.) during the grain-filling stage. International Journal of Molecular Sciences, 2019, 20:1098.
doi: 10.3390/ijms20051098
|
[23] |
MA X, ZHANG Q, ZHU Q, LIU W, CHEN Y, QIU R, WANG B, YANG Z, LI H, LIU Y, XIE Y, SHEN R, CHEN S, WANG Z, CHEN Y, GUO J, CHEN L, ZHAO X, DONG Z, LIU Y G. A robust CRISPR/ Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8):1274-1284.
doi: 10.1016/j.molp.2015.04.007
|
[24] |
郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49(10):1185-1212.
|
|
GUO T, YU H, QIE J, LI J Y, HAN B, LIN H X. Advances in rice genetics and breeding by molecular design in China. Scientia Sinica Vitae, 2019, 49(10):1185-1212. (in Chinese)
|
[25] |
宫景文, 刘文超. 2030年非洲粮食问题预测及对中国的影响. 国土资源情报, 2017, 8:31-38.
|
|
GONG J W, LIU W C. Forecast of Africa’s food problems in 2030 and its impacts on China. Land and Resources Information, 2017, 8:31-38. (in Chinese)
|
[26] |
凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展—精确定量栽培. 中国稻米, 2005, 1:3-7.
|
|
LING Q H, ZHANG H C, DING Y F, ZHANG Y B. New development of rice high-yield technology-precise and quantitative cultivation. China Rice, 2005, 1:3-7. (in Chinese)
|
[27] |
黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018, 44(6):844-851.
|
|
HUANG Z M, ZHOU Y B, TANG X D, ZHAO X H, ZHOU Z W, FU X X, WANG K, SHI J W, LI Y F, FU C J, YANG Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agronomica Sinica, 2018, 44(6):844-851. (in Chinese)
|
[28] |
季新, 李飞, 晏云, 孙红正, 张静, 李俊周, 彭廷, 杜彦修, 赵全志. 基于CRISPR/Cas9系统的水稻光敏色素互作因子OsPIL15基因编辑. 中国农业科学, 2017, 50(15):2861-2871.
|
|
JI X, LI F, YAN Y, SUN H Z, ZHANG J, LI J Z, PENG T, DU Y X, ZHAO Q Z. CRISPR/Cas9 system-based editing of phytochrome- interacting factor OsPIL15 . Scientia Agricultura Sinica, 2017, 50(15):2861-2871. (in Chinese)
|
[29] |
盛夏冰, 谭炎宁, 孙志忠, 余东, 汪雪峰, 袁贵龙, 袁定阳, 段美娟. 利用CRISPR/Cas9基因组编辑技术定向降低水稻落粒性. 中国农业科学, 2018, 51(14):2631-2641.
|
|
SHENG X B, TAN Y N, SUN Z Z, YU D, WANG X F, YUAN G L, YUAN D Y, DUAN M J. Using CRISPR/Cas9-mediated targeted mutagenesis of qSH1 reduces the seed shattering in rice . Scientia Agricultura Sinica, 2018, 51(14):2631-2641. (in Chinese)
|