中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2355-2365.doi: 10.3864/j.issn.0578-1752.2021.11.009
收稿日期:
2020-07-27
接受日期:
2020-09-23
出版日期:
2021-06-01
发布日期:
2021-06-09
通讯作者:
焦小强
作者简介:
邓丽娟,E-mail:基金资助:
DENG LiJuan(),JIAO XiaoQiang()
Received:
2020-07-27
Accepted:
2020-09-23
Online:
2021-06-01
Published:
2021-06-09
Contact:
XiaoQiang JIAO
摘要:
【目的】氮是影响小麦产量和籽粒蛋白质含量的关键因素之一,然而产量的不断提升一定程度上稀释了籽粒的蛋白质含量,小麦高产和优质难以协同实现。因此如何通过优化氮管理实现小麦增产和籽粒品质的协同提升是小麦可持续生产的关键。【方法】搜集了1990—2017年间发表的2 758个氮管理措施对小麦产量和蛋白质品质影响的研究案例,利用整合分析的方法,评估了氮肥管理方式对小麦产量和籽粒的影响,并且结合氮流动分析方法,提出了综合氮管理措施实现小麦提质增效的方案。【结果】1990—2017年间,总体来讲,增施氮肥小麦产量提高了42%±1.2%,籽粒蛋白质含量提高了19%±0.7%;随着施氮量的增加,小麦产量和籽粒蛋白质含量均呈现先增加后降低的趋势,氮肥的增产效应在施用量200—250 kg N·hm-2时最显著,而籽粒蛋白质的增加效应在施氮量384 kg N·hm-2时最显著;小麦产量提高和籽粒蛋白质提升在基追比为1—2时效应最显著。与施氮量>300 kg N·hm-2相比,将施氮量控制在200—250 kg N·hm-2能有效降低氮损失,提高氮利用效率。在其他管理措施一致的条件下,与单一优化氮肥用量或基追比相比,同时优化氮肥用量和基追比使氮肥的增产效应提高8%—30%,提质效应提高19%—21%。【结论】增施氮肥能够实现小麦产量提高和籽粒蛋白质含量提升,不同施氮量和基追比对施氮的增产提质效应均有显著影响,同时优化施氮量和基追比的综合氮管理措施不仅能协同实现小麦高产和优质的目标,还能降低环境排放,这为未来的小麦可持续生产管理提供了案例支撑。
邓丽娟,焦小强. 氮管理对冬小麦产量和品质影响的整合分析[J]. 中国农业科学, 2021, 54(11): 2355-2365.
DENG LiJuan,JIAO XiaoQiang. A Meta-Analysis of Effects of Nitrogen Management on Winter Wheat Yield and Quality[J]. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365.
表1
施氮对小麦产量和籽粒蛋白质含量效应数据库解释变量分类分组"
解释变量 Categorical explanatory variable | 分组 Group |
---|---|
氮肥施用量 N fertilizer rate (kg·hm-2) | ≤100; 100-150; 150-200; 200-250; 250-300; >300 |
基追比 Dressing ratio | 全基施All base; <1; =1; 1-2; ≥2; 全追施All topdressing |
对照组产量 Wheat yield of CK (t·hm-2) | ≤3; 3-4; 4-5; 5-6; 6-7; 7-8; >8 |
对照组蛋白质含量 Grain protein concentration of CK (%) | ≤10; 10-12; 12-14; >14 |
有机质含量SOM (g·kg-1) | ≤10; 10-20; >20 |
全氮含量TN (g·kg-1) | ≤1; 1-1.5; >1.5 |
碱解氮含量AN (mg·kg-1) | ≤60; 60-90; >90 |
速效磷含量AP (mg·kg-1) | 5-10; 10-20; >20 |
[1] | ZÖRB C, LUDEWIG U, HAWKESFORD M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends in Plant Science, 2018,23:11. |
[2] |
GODFRAY H C J, BEDDINGTON J R, CRUTE I R, L HADDAD, D LAWRENCE. Food Security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383 |
[3] | TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the USA, 2011,108(50):20260-20264. |
[4] |
HAWKESFORD M J. Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 2014,59(3):276-283.
doi: 10.1016/j.jcs.2013.12.001 |
[5] |
GU B, GE Y, CHANG S X, LUO W D, CHANG J. Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 2013,23(5):1112-1121.
doi: 10.1016/j.gloenvcha.2013.05.004 |
[6] |
ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016,6(1). DOI: 10.1038/SREP25088.
doi: 10.1038/SREP25088 |
[7] |
LIU X J, ZHANG Y, HAN W, SHEN J B, CUI Z L, VITOUSEK P M, ERISMAN J W, GOULDING K W T, CHRISTIE P, FANGMEIER A. Enhanced nitrogen deposition over China. Nature, 2013,494(7438):459-462.
doi: 10.1038/nature11917 |
[8] |
NORSE D, JU X T. Environmental costs of China’s food security. Agriculture, Ecosystems & Environment, 2015,209:5-14.
doi: 10.1016/j.agee.2015.02.014 |
[9] |
GUO J H, LIU X J, ZHANG Y, ZHANG Y, SHEN J B, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
doi: 10.1126/science.1182570 |
[10] |
BODIRSKY B L, POPP A, CAMPEN H L, DIETRICH J P, ROLINSKI S, WEINDL L, SCHMITZ C, MULLER C, BONSCH , HUMPENODER F, BIEWALD A, STEVANOVIC M. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014,5(1). DOI: 10.1038/ncomms4858.
doi: 10.1038/ncomms4858 |
[11] | ZHANG W F, DOU Z X, HE P, JU X T, POWLSON D, CHADWICK D, NORSE D, LI Y L, ZHANG Y, WU L, CHEN X P, CASSMAN K G, ZHANG F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the USA, 2013,110(21):8375-8380. |
[12] |
VALKAMA E, SALO T, ESALA M, TURTOLA E. Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions: A meta-analysis. Agriculture, Ecosystems & Environment, 2013,164:1-13.
doi: 10.1016/j.agee.2012.09.010 |
[13] | VALKAMA E, SALO T, ESALA M, TURTOLA E. Grain quality and N uptake of spring cereals as affected by nitrogen fertilization under Nordic conditions: A meta-analysis. Agriculture and Food Science, 2013,22(2):208-222. |
[14] |
WANG L F, SUN J T, ZHANG Z B, XU P, SHANG G, ZHOU P. Winter wheat grain yield in response to different production practices and soil fertility in northern China. Soil and Tillage Research, 2018,176:10-17.
doi: 10.1016/j.still.2017.10.001 |
[15] |
XUE C, SCHULTE AUF'M ERLEY G, RÜCKER S, KOEHLER P, OBENAUF U, MUHLING K H. Late nitrogen application increased protein concentration but not baking quality of wheat. Journal of Plant Nutrition and Soil Science, 2016,179(4):591-601.
doi: 10.1002/jpln.201500569 |
[16] |
XIA L, LAM S K, CHEN D, WANG J Y, TANG Q, YAN X Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017,23(5):1917-1925.
doi: 10.1111/gcb.13455 |
[17] |
HEDGES L V, GUREVITCH J, CURTIS P S. The Meta-analysis of response ratios in experimental ecology. Ecology, 1999,80(4):1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 |
[18] |
LI Q, LI H, ZHANG L, ZHANG S Q, CHEN Y L. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field crops research, 2018,221:50-60.
doi: 10.1016/j.fcr.2018.02.017 |
[19] | EGGER M, DAVEY S G, SCHNEIDER M, MINDER A. Bias in meta-analysis detected by a simple, graphical test. Balkan Medical Journal, 1997,315(7109):629-634. |
[20] | 马林, 魏静, 王方浩, 高利伟, 赵路, 马文奇, 张福锁. 基于模型和物质流分析方法的食物链氮素区域间流动——以黄淮海区为例. 生态学报, 2009(1):475-483. |
MA L, WEI J, WANG F H, GAO L W, ZHAO L, MA W Q, ZHANG F S. Nitrogen flow in food chain among regions based on MFA and model: A case of Huang-Huai-Hai Plain. Acta Ecologica Sinica, 2009(1):475-483.(in Chinese) | |
[21] | 王激清, 马文奇, 江荣风, 张福锁. 中国农田生态系统氮素平衡模型的建立及其应用. 农业工程学报, 2007(8):210-215. |
WANG J Q, MA W Q, JIANG R F, ZHANG F S. Development and application of nitrogen balance model of agro-ecosystem in China. Transactions of the CSAE, 2007,23(8):210-215. (in Chinese) | |
[22] |
CHEN X P, CUI Z L, FAN M S, VITOUSEK P M, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014,514(7523):486-489.
doi: 10.1038/nature13609 |
[23] | 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011,44(20):4207-4229. |
LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011,44(20):4207-4229. (in Chinese) | |
[24] | FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980. PLoS ONE, 2013(9):e74617. |
[25] |
BARNEIX A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology, 2007,164(5):581-590.
doi: 10.1016/j.jplph.2006.03.009 |
[26] | 中国农业部. 全国农业可持续发展规划(2015-2030年). 农村实用技术, 2016(4):5-15. |
Ministry of Agriculture of China. National plan for sustainable agricultural development (2015-2030). Applicable Technologies for Rural Areas, 2016: 5-15. (in Chinese) | |
[27] |
JU X T, ZHANG C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. Journal of Integrative Agriculture, 2017,16(12):2848-2862.
doi: 10.1016/S2095-3119(17)61743-X |
[28] |
ZHANG L, LIANG Z Y, HE X M, MENG Q F, HU Y C, SCHMIDHALTER U, ZHANG W, ZOU C Q, CHEN X P. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Research, 2020,249:107754.
doi: 10.1016/j.fcr.2020.107754 |
[29] |
CHEN Y L, XIAO C X, WU D L, XIA T T, CHEN Q W, CHEN F J. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. European Journal of Agronomy, 2015,62:79-89.
doi: 10.1016/j.eja.2014.09.008 |
[30] |
YU X R, CHEN X Y, WANG L L, YANG Y, ZHU X W, SHAO S S, CUI W X, XIONG F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. Journal of Experimental Botany, 2017,68(9):2259-2274.
doi: 10.1093/jxb/erx108 |
[31] |
CHEN K, VYN T J. Post-silking factor consequences for N efficiency changes over 38 years of commercial maize hybrids. Frontiers in Plant Science, 2017,8:1737.
doi: 10.3389/fpls.2017.01737 |
[32] |
SCHULZ R, MAKARY T, HUBERT S, HARTUNG K, GRUBER S, DONATH S, DOHLER J, WEIβ K, EHRHART E, CLAUPEIN W, PIEPHO P, PEKRUN C, MULLER T. Is it necessary to split nitrogen fertilization for winter wheat? On-farm research on Luvisols in South- West Germany. The Journal of Agricultural Science, 2015,153(4):575-587.
doi: 10.1017/S0021859614000288 |
[33] |
GODFERY D, HAWKESFORD M J, POWERS S J, MILLAR S, SHEWRY P R. Effects of crop nutrition on wheat grain composition and end use quality. Journal of Agricultural and Food Chemistry, 2010,58(5):3012-3021.
doi: 10.1021/jf9040645 |
[34] |
CUI Z L, YUE S C, WANG G L, ZHANG F S, CHEN X P. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 2013,47(11):6015-6022.
doi: 10.1021/es4003026 |
[35] | CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ROMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the USA, 2011,108(16):6399-6404. |
[36] |
ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015,528(7580):51-59.
doi: 10.1038/nature15743 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[6] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[7] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[8] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[9] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[10] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[11] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[12] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[13] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[14] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[15] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
|