中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2053-2063.doi: 10.3864/j.issn.0578-1752.2021.10.002
张芳1(),任毅1,曹俊梅2,李法计3,夏先春4,耿洪伟1(
)
收稿日期:
2020-10-28
接受日期:
2020-12-02
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
耿洪伟
作者简介:
张芳,E-mail: 基金资助:
ZHANG Fang1(),REN Yi1,CAO JunMei2,LI FaJi3,XIA XianChun4,GENG HongWei1(
)
Received:
2020-10-28
Accepted:
2020-12-02
Online:
2021-05-16
Published:
2021-05-24
Contact:
HongWei GENG
摘要:
【目的】籽粒性状是影响小麦产量的重要因素,通过对小麦籽粒性状进行全基因组关联分析,发掘控制小麦籽粒性状显著位点,为小麦籽粒性状的遗传改良研究提供理论参考。【方法】以在新疆种植的121份小麦为材料,利用小麦50K SNP芯片,对粒长、粒宽、籽粒长宽比、籽粒面积、籽粒周长和千粒重6个性状进行基于混合线性模型MLM(Q+K)的全基因组关联分析。【结果】在不同环境间6个籽粒性状均表现出广泛的表型变异,其中千粒重变异系数最大为13.91%—17.79%,各籽粒性状遗传力为0.85—0.90。多态性信息含量PIC值为0.09—0.38,最小等位基因频率MAF值为0.05—0.50。群体结构分析表明,试验所用自然群体可分为4个亚群。GWAS结果表明,共检测到592个与6个性状显著关联位点(P<0.001),其中,涉及6个性状的29个SNP在2个及以上的环境中被重复检测到,分布于1A(5)、1B(2)、1D、2A(5)、3B、5A、5D、6B(4)、6D、7B和7D(7)染色体上,解释9.3%—22.7%的表型变异。检测到6个与粒长稳定的关联位点,分布在1A、2A和7D染色体上,解释9.9%—22.7%的表型变异;检测到2个与粒宽稳定的关联位点,分布在3B和5D染色体上,解释9.6%—12.2%的表型变异;检测到6个与籽粒长宽比稳定的关联位点,分布在2A(2)、5A、7B和7D(2)染色体上,解释10.1%—19.4%的表型变异;检测到3个与籽粒面积稳定的关联位点,分布在1A、1B和1D染色体上,解释9.9%—18.2%的表型变异;检测到6个与籽粒周长稳定的关联位点,分布在1A(2)、2A、6D和7D(2)染色体上,解释9.3%—22.6%的表型变异;检测到6个与千粒重稳定的关联位点,分布在1B、2A和6B染色体上,解释9.7%—12.9%的表型变异。挖掘到5个控制小麦籽粒性状一因多效显著关联位点,分布在1A、2A(2)和7D(2)染色体上,解释9.9%—22.7%的表型变异。【结论】本研究材料遗传多样性丰富,在自然群体中共发现29个与6个籽粒性状在2个及以上环境中稳定显著的关联位点。
张芳,任毅,曹俊梅,李法计,夏先春,耿洪伟. 基于SNP标记的小麦籽粒性状全基因组关联分析[J]. 中国农业科学, 2021, 54(10): 2053-2063.
ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers[J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
表1
小麦自然群体籽粒性状基本统计信息"
性状 Trait | 环境 Environment | 平均值 Mean | 范围 Range | 标准差 SD | 变异系数 CV (%) | 偏度 Ske. | 峰度 Kur. |
---|---|---|---|---|---|---|---|
千粒重 TKW | 2017 | 22.92 | 14.86—32.28 | 4.08 | 17.79 | -0.18 | -0.43 |
2018 | 35.55 | 23.13—49.03 | 4.95 | 13.91 | 0.05 | -0.02 | |
2019 | 37.84 | 19.15—54.15 | 5.62 | 14.85 | -0.02 | 0.41 | |
粒长 GL | 2017 | 6.44 | 5.66—7.59 | 0.34 | 5.24 | 0.54 | 0.88 |
2018 | 6.63 | 5.67—7.48 | 0.31 | 4.66 | 0.20 | 0.54 | |
2019 | 6.61 | 5.78—7.51 | 0.31 | 4.69 | 0.16 | 0.06 | |
粒宽 GW | 2017 | 3.14 | 2.61—3.61 | 0.24 | 7.52 | -0.39 | -0.28 |
2018 | 3.15 | 2.61—3.65 | 0.22 | 6.95 | -0.19 | -0.65 | |
2019 | 3.27 | 2.69—3.64 | 0.18 | 5.50 | -0.43 | 0.03 | |
长宽比 LWR | 2017 | 2.09 | 1.75—2.67 | 0.19 | 9.12 | 0.74 | 0.20 |
2018 | 2.13 | 1.81—2.58 | 0.16 | 7.39 | 0.59 | -0.06 | |
2019 | 2.03 | 1.75—2.41 | 0.13 | 6.40 | 0.68 | 0.43 | |
籽粒面积 GA | 2017 | 15.82 | 11.88—19.59 | 1.54 | 9.74 | -0.11 | 0.16 |
2018 | 16.24 | 12.55—21.34 | 1.59 | 9.76 | 0.23 | 0.02 | |
2019 | 16.67 | 12.65—20.84 | 1.38 | 8.28 | -0.01 | 0.63 | |
籽粒周长 GC | 2017 | 16.61 | 14.52—18.62 | 0.76 | 4.56 | 0.07 | 0.67 |
2018 | 16.78 | 14.61—19.11 | 0.72 | 4.30 | 0.22 | 0.58 | |
2019 | 17.27 | 15.73—19.80 | 0.72 | 4.17 | 0.25 | 0.44 |
表2
小麦籽粒性状方差分析"
性状 Trait | 均方MS | F值F value | 遗传力 h2 | |||||
---|---|---|---|---|---|---|---|---|
基因型 Genotype | 环境 Environment | 基因型×环境 G×E | 误差 Error | 基因型 Genotype | 环境 Environment | 基因型×环境 G×E | ||
千粒重TKW | 157.46 | 17050.92 | 27.47 | 4.43 | 35.54*** | 3848.31*** | 6.20*** | 0.85 |
粒长GL | 0.60 | 2.74 | 0.10 | 0.02 | 37.54*** | 170.47*** | 6.18*** | 0.86 |
粒宽GW | 0.29 | 1.63 | 0.04 | 0.01 | 22.98*** | 131.03*** | 2.84*** | 0.89 |
长宽比LWR | 0.16 | 0.96 | 0.02 | 0.00 | 40.15*** | 236.77*** | 4.53*** | 0.90 |
籽粒面积GA | 14.19 | 52.10 | 1.96 | 0.53 | 26.59*** | 97.66*** | 3.68*** | 0.87 |
籽粒周长GC | 3.28 | 36.25 | 0.52 | 0.14 | 23.40*** | 258.40*** | 3.71*** | 0.86 |
附表1
标记分布及多态性"
染色体 Chromosome | 标记数量 No. of markers | 物理长度 Physical distance (Mb) | 标记密度Density of marker | 遗传多样性Genetic diversity | 最小等位基因频率MAF | 多态信含量 PIC | ||
---|---|---|---|---|---|---|---|---|
平均 Mean | 范围 Range | 平均 Mean | 范围 Range | |||||
1A | 2544 | 602.45 | 0.24 | 0.35 | 0.25 | 0.05—0.50 | 0.28 | 0.09—0.38 |
1B | 1469 | 746.65 | 0.29 | 0.34 | 0.25 | 0.05—0.50 | 0.27 | 0.09—0.38 |
1D | 1486 | 498.09 | 0.20 | 0.36 | 0.26 | 0.05—0.50 | 0.29 | 0.09—0.38 |
2A | 2682 | 787.57 | 0.31 | 0.38 | 0.29 | 0.05—0.50 | 0.3 | 0.09—0.38 |
2B | 2177 | 802.80 | 0.32 | 0.37 | 0.27 | 0.05—0.50 | 0.29 | 0.09—0.38 |
2D | 1308 | 655.89 | 0.26 | 0.37 | 0.27 | 0.05—0.50 | 0.29 | 0.09—0.38 |
3A | 2252 | 750.52 | 0.29 | 0.46 | 0.37 | 0.25—0.50 | 0.35 | 0.30—0.38 |
3B | 2275 | 868.70 | 0.34 | 0.42 | 0.33 | 0.17—0.50 | 0.33 | 0.24—0.38 |
3D | 1201 | 626.21 | 0.25 | 0.36 | 0.27 | 0.05—0.50 | 0.29 | 0.09—0.38 |
4A | 2063 | 750.43 | 0.29 | 0.46 | 0.39 | 0.26—0.50 | 0.36 | 0.30—0.38 |
4B | 1327 | 672.85 | 0.26 | 0.39 | 0.29 | 0.11—0.50 | 0.31 | 0.18—0.38 |
4D | 817 | 521.81 | 0.20 | 0.39 | 0.29 | 0.05—0.50 | 0.31 | 0.09—0.38 |
5A | 2251 | 709.53 | 0.28 | 0.49 | 0.43 | 0.35—0.50 | 0.37 | 0.35—0.38 |
5B | 1605 | 713.57 | 0.28 | 0.46 | 0.38 | 0.26—0.50 | 0.35 | 0.29—0.38 |
5D | 1373 | 573.30 | 0.22 | 0.41 | 0.31 | 0.16—0.50 | 0.32 | 0.23—0.38 |
6A | 2315 | 625.50 | 0.24 | 0.49 | 0.43 | 0.34—0.50 | 0.37 | 0.35—0.38 |
6B | 1305 | 725.17 | 0.28 | 0.45 | 0.37 | 0.21—0.50 | 0.35 | 0.28—0.38 |
6D | 1330 | 498.56 | 0.19 | 0.45 | 0.36 | 0.20—0.50 | 0.34 | 0.27—0.38 |
7A | 2407 | 745.91 | 0.29 | 0.48 | 0.41 | 0.31—0.50 | 0.36 | 0.34—0.38 |
7B | 1332 | 750.19 | 0.29 | 0.45 | 0.37 | 0.22—0.50 | 0.35 | 0.28—0.38 |
7D | 1354 | 643.15 | 0.25 | 0.44 | 0.32 | 0.19—0.50 | 0.33 | 0.26—0.38 |
A基因组A genome | 16514 | 4971.91 | 0.30 | 0.44 | 0.37 | 0.05—0.50 | 0.34 | 0.09—0.38 |
B基因组 B genome | 11490 | 5279.93 | 0.46 | 0.41 | 0.32 | 0.05—0.50 | 0.32 | 0.09—0.38 |
D基因组 D genome | 8869 | 4017.01 | 0.45 | 0.40 | 0.30 | 0.05—0.50 | 0.31 | 0.09—0.38 |
总计Total | 36873 | 14268.85 | 0.39 | 0.42 | 0.33 | 0.05—0.50 | 0.32 | 0.09—0.38 |
表4
SNP-GWAS检测到的产量性状相关位点"
性状 Trait | 标记 Marker | 染色体 Chr. | 位置 Position (Mb) | 混合线性模型MLM | 环境 Environment | 前人报道 Previously reported | |
---|---|---|---|---|---|---|---|
P值P value | 贡献率R2 (%) | ||||||
千粒重 TKW | AX-111669426 | 1B | 375.4 | 5.94E-04-7.67E-04 | 10.4—10.5 | E1/E4 | Xwmc269-Xwmc33[ |
AX-111531320 | 2A | 204.5 | 5.88E-04-8.98E-04 | 10.3—11.3 | E2/E4 | ||
AX-109874065 | 6B | 34.0 | 7.73E-04-9.84E-04 | 9.7—10.4 | E1/E2 | TKW-xgwm533[ | |
AX-110446017 | 6B | 486.1 | 3.98E-04-7.98E-04 | 10.3—12.9 | E1/E2 | QKWpur-6B[ | |
AX-110936500 | 6B | 569.4 | 4.97E-04-6.86E-04 | 10.5—10.6 | E1/E2 | ||
AX-109493716 | 6B | 573.6 | 4.92E-04-6.58E-04 | 11.0—11.8 | E1/E2 | ||
粒长 GL | AX-94757616 | 1A | 64.6 | 3.56E-04-7.55E-04 | 10.7—11.9 | E2/E4 | |
AX-111082947 | 1A | 473.7 | 1.41E-06-9.42E-04 | 9.9—22.7 | E1/E2/E3/E4 | ||
AX-94497666 | 2A | 748.4 | 3.30E-04-7.90E-04 | 10.3—11.8 | E1/E2/E3/E4 | TaFlo2[ | |
AX-111614568 | 7D | 13.7—13.9 | 1.96E-05-2.03E-04 | 12.9—17.3 | E3/E4 | TaGS-D1[ | |
AX-95633409 | 7D | 33.6 | 4.46E-04-8.05E-04 | 10.7—11.9 | E3/E4 | QKLpur-7D.1[ | |
AX-111197303 | 7D | 47.4—49.2 | 2.70E-04-8.32E-04 | 10.9—12.6 | E1/E4 | QKL.caas-7DS [ | |
粒宽 GW | AX-108948870 | 3B | 24.6 | 5.20E-04-9.21E-04 | 10.6—12.2 | E1/E4 | Kukri_c14642_917[ |
AX-179477405 | 5D | 210.6 | 6.78E-04-8.33E-04 | 9.6—10.6 | E2/E4 | ||
粒长宽比 LWR | AX-111722425 | 2A | 131.7 | 1.38E-05-9.53E-04 | 10.1—18.3 | E1/E2/E3/E4 | |
AX-111531320 | 2A | 204.5 | 3.57E-05-3.28E-04 | 13.0—17.1 | E2/E3 | ||
AX-179560109 | 5A | 141.9 | 1.02E-04-1.08E-04 | 14.7—15.2 | E2/E3 | ||
AX-112286258 | 7B | 709.1 | 1.48E-05-4.09E-04 | 11.1—19.4 | E1/E3 | QGlwr.ccsu-7B.1[ | |
AX-111614568 | 7D | 13.7—13.9 | 4.98E-05-5.51E-05 | 10.9—15.9 | E1/E4 | TaGS-D1[ | |
AX-158554015 | 7D | 403.7 | 6.09E-05-6.42E-04 | 10.8—15.4 | E1/E2 | ||
籽粒面积 GA | AX-95176275 | 1A | 146.6 | 5.92E-04-9.82E-04 | 9.9—11.2 | E1/E4 | |
AX-179476290 | 1B | 377.4 | 1.21E-05-8.31E-04 | 10.0—18.2 | E3/E4 | qKA1B-1[ | |
AX-179477117 | 1D | 220.5 | 1.21E-05-8.31E-04 | 10.0—18.2 | E3/E4 | ||
籽粒周长 GC | AX-111082947 | 1A | 473.7 | 1.34E-06-5.56E-04 | 10.1—22.6 | E1/E3/E4 | |
AX-109382284 | 1A | 546.8 | 2.27E-06-3.55E-04 | 11.8—21.3 | E3/E4 | ||
AX-94497666 | 2A | 748.4 | 7.62E-04-8.68E-04 | 9.3—10.3 | E1/E4 | TaFlo2[ | |
AX-111583179 | 6D | 242.7 | 2.11E-04-5.00E-04 | 12.0—13.2 | E2/E3 | ||
AX-111614568 | 7D | 13.7—13.9 | 1.04E-04-3.72E-04 | 11.7—14.2 | E3/E4 | TaGS-D1[ | |
AX-111197303 | 7D | 47.4—49.2 | 7.15E-04-8.05E-04 | 10.0—10.4 | E1/E4 | QKL.caas-7DS [ |
[1] | 庄巧生. 产量潜力改良中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 498-519. |
ZHUANG Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: Chinese Agricultural Press, 2003. (in Chinese) | |
[2] |
GODFRAY H C, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383 |
[3] |
XIN F, ZHU T, WEI, S W, HAN Y C, ZHAO Y, ZHANG D Z, MA L J, DING Q. QTL mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020,10(1):12-25.
doi: 10.1038/s41598-019-55410-5 |
[4] | ROSEGRANT M W, AGCAOILI S M. Global and regional food demand, supply and trade prospects to 2010. Washington: International Food Policy Research Institute Press, 1995: 61-84. |
[5] |
REYNOLDS M, BONNETT D, CHAPMAN S C, FURBANK R T, MANE’S Y, MATHER D E, PARRY M A J. Raising yield potential of wheat I overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2011,62(2):439-452.
doi: 10.1093/jxb/erq311 |
[6] | BENNETT M D, SMITH J B. Nuclear DNA amounts in angiosperms. Philosophical transactions of the royal society of London, 1976,274(933):227-274. |
[7] | 冯建英, 温阳俊, 张瑾, 章元明. 关联分析方法的研究进展. 作物学报, 2016,42(7):945-956. |
FENG J Y, WEN Y J, ZHANG J, ZHANG Y M. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016,42(7):945-956. (in Chinese) | |
[8] |
BROOKES A J. The essence of SNPs. Gene, 1999,234(2):177-186.
doi: 10.1016/S0378-1119(99)00219-X |
[9] |
RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 2002,5(2):94-100.
doi: 10.1016/S1369-5266(02)00240-6 |
[10] | 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013,39(3):549-556. |
ZHENG D B, YANG X H, LI J S, YAN J B, ZHANG S L, HE Z H, HUANG Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agronomica Sinica, 2013,39(3):549-556. (in Chinese) | |
[11] |
WANG S C, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B E, MACCAFERRI M, SALVI S, MILNER S G, CATTIVELLI L, MASTRANGELO A M, WHAN A, STEPHEN S, BARKER G, WIESEKE R, PLIESKE J, IWGSC, LILLEMO M, MATHER D, APPELS R, DOLFERUS R, GUEDIRA G B, KOROL A, AKHUNOVA A R, FEUILLET C, SALSE J, MORGANTE M, POZNIZK C, LUO M C, DVORAK J, MORELL M, DUBCOVSKY J, GANAL M, TUBEROSA R, LAWLEY C, MIKOULITCH I, CAVANAGH C, EDWARDS K, HAYDEN M, AKHUNOV E. Characterization of polyploid wheat genomic diversity using a high-density 90, 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014,12:787-796.
doi: 10.1111/pbi.2014.12.issue-6 |
[12] | 吴凯. 农作物SNP芯片技术及其在分子育种中的应用. 山西农业科学, 2018,46(4):670-672. |
WU K. Research progress on crop SNP chip technology and its application in molecular breeding. Journal of Shanxi Agricultural Sciences, 2018,46(4):670-672. (in Chinese) | |
[13] |
LIU J J, LUO W, QIN N, DING P, ZHANG H, YANG C C, MU Y, TANG H P, LIU Y X, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L, LIU C J, LAN X J, MA J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018,131:2439-2450.
doi: 10.1007/s00122-018-3164-9 |
[14] |
CAMPBELL K G, BERGMAN C J, GUALBERTO D G, ANDERSON J A, GIROUX M J, HARELAND G, FULCHER G, SORRELLS M E, FINNEY P L. Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Science, 1999,39:1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x |
[15] |
AMMIRAJU J S S, DHOLAKIA B B, SANTRAH D K, LAGU M D, DHALIWAL H S, RAO V S, GUPTA V S, RANJEKAR P K. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics, 2001,102:726-732.
doi: 10.1007/s001220051703 |
[16] |
BRESEGHELLO F, SORRELLS M E. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Research, 2007,101:172-179.
doi: 10.1016/j.fcr.2006.11.008 |
[17] | LI X J, LI L Q, WANG H, SORRELLS M E. Quantitative trait loci analysis for kernel length and width in wheat. Journal of Northwest Agriculture and Forestry University, 2009,37(3):95-100. |
[18] |
PANTALIAÕ G F, NARCISO M, GUIMARÃES C, CASTRO A, COLOMBARI J M, BRESEGHELLO F, RODRIGUES L, VIANELLO R P, BORBA T O, BRONDANI C. Genome wide association study for grain yield in rice cultivated under water deficit. Genetica, 2016,144:651-664.
doi: 10.1007/s10709-016-9932-z |
[19] |
YANO K, YAMAMOTO E, AYAL K, TAKEUCHI H, LO P C, HU L, YAMASAKI M, YOSHIDA S, KITANO H, HIRANO K, MATSUOKA M. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetic, 2016,48:927-936.
doi: 10.1038/ng.3596 |
[20] | WU X, LI Y X, SHI Y S, SONG Y C, ZHANG D F, LI C H, BUCKLER E S, LI Y, ZHANG Z W, WANG T Y. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology, 2016,14:1551-1562. |
[21] | ATANASOV K E, BARQUERO B L, TIBURCIO A F, RUBEN A. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana. Front Plant Science, 2016,7:588-589. |
[22] |
BHATTA M, SHAMANIN V, SHEPELEV S, BAENZIGER P S, POZHERUKOVA V, POTOTSKAYA I, MORGOUNOV A. Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in western Siberia. Genes, 2019,10:1-44.
doi: 10.3390/genes10010001 |
[23] |
SUN C W, ZHANG F Y, YAN X F, ZHANG X F, DONG Z D, CUI D Q, CHEN F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnology Journal, 2017,15:953-969.
doi: 10.1111/pbi.2017.15.issue-8 |
[24] |
DABA S D, TYAGI P, BROWN G G, MOHAMMADI M. Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical united states wheat population. Front Plant Science, 2018,9:1045-1059.
doi: 10.3389/fpls.2018.01045 |
[25] |
LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019,19:168-187.
doi: 10.1186/s12870-019-1781-3 |
[26] | SAJJAD M, MA X L, KHAN S H, SHOAIB M, SONG Y H, YANG W L, ZHANG A, LIU D C. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat. BMC Plant Biology, 2017. DOI 10.1186/s12870-017-1114-3. |
[27] | 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009,42(2):398-407. |
WANG R X, ZHANG X Y, WU L, WANG R, HAI L, YOU G X, YAN C S, XIAO S H. QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009,42(2):398-407. (in Chinese) | |
[28] | 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35(2):270-278. |
ZHANG K P, XU X B, TIAN J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agronomica Sinica, 2009,35(2):270-278. (in Chinese) | |
[29] |
ZHANG Y J, LIU J D, XIA X C, HE Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014,34(3):1097.
doi: 10.1007/s11032-014-0102-7 |
[30] |
LI F J, WEN W E, HE Z H, LIU JD, JIN H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018,131:1903-1924.
doi: 10.1007/s00122-018-3122-6 |
[31] |
MIR R R, KUMAR N, JAISWALI V, GIRDHARWAL N, PRASAD M, BALYAN H S, GUPTA P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012,29:963-972.
doi: 10.1007/s11032-011-9693-4 |
[32] |
KUMARI S, JAISWAL V, MISHRA V K, PALIWAL R, BALYAN H S, GUPTA P H. QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiology Molecular Biology Plants, 2018,24(5):909-920.
doi: 10.1007/s12298-018-0552-1 |
[33] |
XIN F, ZHU T, WEI S W, HAN Y C, ZHAO Y, ZHANG D Z, MA L J, DING Q. QTL Mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020,10:25-37.
doi: 10.1038/s41598-019-56979-7 |
[34] |
GILL B S, APPELS R, OTHAOBERHOLSTER A M B, BUELL C R, BENNETZEN J L B, CHALHOUB B, CHUMLEY F, DVORAK J, IWANAGA M, KELLER B, LI W L, MCCOMBIE W R, OGIHARA Y, QUETIER F, SASAKI T. A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics, 2004,168(2):1087-1096.
doi: 10.1534/genetics.104.034769 |
[35] |
DHOLAKIA B B, AMMIRAJU J S S, Singh H, LAGU M D, RODER M S, RAO V S, DHALIWAL H S, RANJEKAR P K, GUPTA V S. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003,122(5):392-395.
doi: 10.1046/j.1439-0523.2003.00896.x |
[36] |
GEGAS V C, NAZARI A, GRIFFITHS S, SIMMONDS J, FISH L, ORFORD S, SAYERS L, DOONAN J H, SNAPE J W. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 2010,22(6):1046-1056.
doi: 10.1105/tpc.110.074153 |
[37] | 陈佳慧, 兰进好, 王晖, 王道峰, 林琪, 田纪春. 小麦籽粒构型性状与粒重的相关性分析. 中国种业, 2010,8:57-59. |
CHEN J H, LAN J H, WANG H, WANG D F, LIN Q, TIAN J C. Correlation analysis of wheat grain configuration traits and grain weight. China Seed Industry, 2010,8:57-59. (in Chinese) | |
[38] | 余曼丽, 赵林姝, 郭会君, 古佳玉, 李军辉, 谢永盾, 赵世荣, 刘录祥. 小麦籽粒性状的QTL定位. 麦类作物学报, 2014,34(8):1029-1035. |
YU M L, ZHAO L S, GUO H J, GU J Y, LI J H, XIE Y D, ZHAO S R, LIU L X. QTL mapping for kernel traits in wheat. Journal of Triticeae Crops, 2014,34(8):1029-1035. (in Chinese) | |
[39] | 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020,46(8):1-11. |
MA Y M, FENG Z Y, WANG W, ZHANG S J, GUO Y, NI Z F, LIU J. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits. Acta Agronomica Sinica, 2020,46(8):1-11. (in Chinese) | |
[40] | CABRAL A L, JORDAN M C, LARSON G, SOMERS D J, HUMPHREYS D G, MCCARTNEY C A. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/AC domain. PLoS ONE, 2018,13(1):1-32. |
[41] |
MUHAMMAD J, ALI A, GUL A, GHAFOOR A, NAPAR A A, IBRAHIM A M H, NAVEED N H, YASIN N A, KAZI A M. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biology, 2019,19:149-167.
doi: 10.1186/s12870-019-1754-6 |
[42] | CAO S H, XU D A, HANIF M, XIA X C, HE Z H. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020,178(1):539-551. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
|